- 初中二次函數(shù)教案 推薦度:
- 《二次函數(shù)》教案 推薦度:
- 相關(guān)推薦
二次函數(shù)教案
作為一名無私奉獻的老師,就有可能用到教案,通過教案準備可以更好地根據(jù)具體情況對教學(xué)進程做適當?shù)谋匾恼{(diào)整。那么應(yīng)當如何寫教案呢?以下是小編精心整理的二次函數(shù)教案,希望對大家有所幫助。
二次函數(shù)教案1
一、教學(xué)目標:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的'關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
二、教學(xué)重點、難點:
教學(xué)重點:
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學(xué)難點:
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
三、教學(xué)方法:啟發(fā)引導(dǎo) 合作交流
四:教具、學(xué)具:課件
五、教學(xué)媒體:計算機、實物投影。
六、教學(xué)過程:
檢查預(yù)習(xí) 引出課題
預(yù)習(xí)作業(yè):
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。
教師重點關(guān)注:學(xué)生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
二次函數(shù)教案2
【知識與技能】
1.會用描點法畫二次函數(shù)=ax2+bx+c的圖象.
2.會用配方法求拋物線=ax2+bx+c的頂點坐標、開口方向、對稱軸、隨x的增減性.
3.能通過配方求出二次函數(shù)=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實際問題中的最大值或最小值.
【過程與方法】
1.經(jīng)歷探索二次函數(shù)=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的過程,體會建立二次函數(shù)=ax2+bx+c(a≠0)對稱軸和頂點坐標公式的'必要性.
2.在學(xué)習(xí)=ax2+bx+c(a≠0)的性質(zhì)的過程中,滲透轉(zhuǎn)化(化歸)的思想.
【情感態(tài)度】
進一步體會由特殊到一般的化歸思想,形成積極參與數(shù)學(xué)活動的意識.
【教學(xué)重點】
、儆门浞椒ㄇ=ax2+bx+c的頂點坐標;②會用描點法畫=ax2+bx+c的圖象并能說出圖象的性質(zhì).
【教學(xué)難點】
能利用二次函數(shù)=ax2+bx+c(a≠0)的對稱軸和頂點坐標公式,解決一些問題,能通過對稱性畫出二次函數(shù)=ax2+bx+c(a≠0)的圖象.
一、情境導(dǎo)入,初步認識
請同學(xué)們完成下列問題.
1.把二次函數(shù)=-2x2+6x-1化成=a(x-h)2+的形式.
2.寫出二次函數(shù)=-2x2+6x-1的開口方向,對稱軸及頂點坐標.
3.畫=-2x2+6x-1的圖象.
4.拋物線=-2x2如何平移得到=-2x2+6x-1的圖象.
5.二次函數(shù)=-2x2+6x-1的隨x的增減性如何?
【教學(xué)說明】上述問題教師應(yīng)放手引導(dǎo)學(xué)生逐一完成,從而領(lǐng)會=ax2+bx+c與=a(x-h)2+的轉(zhuǎn)化過程.
二、思考探究,獲取新知
探究1 如何畫=ax2+bx+c圖象,你可以歸納為哪幾步?
學(xué)生回答、教師點評:
一般分為三步:
1.先用配方法求出=ax2+bx+c的對稱軸和頂點坐標.
2.列表,描點,連線畫出對稱軸右邊的部分圖象.
3.利用對稱點,畫出對稱軸左邊的部分圖象.
探究2 二次函數(shù)=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎?
二次函數(shù)教案3
教學(xué)設(shè)計
一 教學(xué)設(shè)計思路
通過小球飛行高度問題展示二次函數(shù)與一元二次方程的聯(lián)系。然后進一步舉例說明,從而得出二次函數(shù)與一元二次方程的關(guān)系。最后通過例題介紹用二次函數(shù)的圖象求一元二次方程的根的方法。
二 教學(xué)目標
1 知識與技能
(1).經(jīng)歷探索函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系?偨Y(jié)出二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,表述何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
(2).會利用圖象法求一元二次方程的近似解。
2 過程與方法
經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
三 情感態(tài)度價值觀
通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況培養(yǎng)學(xué)生自主探索意識,從中體會事物普遍聯(lián)系的觀點,進一步體會數(shù)形結(jié)合思想.
四 教學(xué)重點和難點
重點:方程與函數(shù)之間的聯(lián)系,會利用二次函數(shù)的圖象求一元二次方程的近似解。
難點:二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
五 教學(xué)方法
討論探索法
六 教學(xué)過程設(shè)計
(一)問題的提出與解決
問題 如圖,以20m/s的速度將小球沿與地面成30角的方向擊出時,球的飛行路線將是一條拋物線。如果不考慮空氣阻力,球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有關(guān)系
h=20t5t2。
考慮以下問題
(1)球的飛行高度能否達到15m?如能,需要多少飛行時間?
(2)球的飛行高度能否達到20m?如能,需要多少飛行時間?
(3)球的飛行高度能否達到20.5m?為什么?
(4)球從飛出到落地要用多少時間?
分析:由于球的飛行高度h與飛行時間t的關(guān)系是二次函數(shù)
h=20t-5t2。
所以可以將問題中h的值代入函數(shù)解析式,得到關(guān)于t的一元二次方程,如果方程有合乎實際的解,則說明球的.飛行高度可以達到問題中h的值:否則,說明球的飛行高度不能達到問題中h的值。
解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。
當球飛行1s和3s時,它的高度為15m。
(2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。
當球飛行2s時,它的高度為20m。
(3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。
因為(-4)2-44.10。所以方程無解。球的飛行高度達不到20.5m。
(4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。
當球飛行0s和4s時,它的高度為0m,即0s時球從地面飛出。4s時球落回地面。
由學(xué)生小組討論,總結(jié)出二次函數(shù)與一元二次方程的解有什么關(guān)系?
例如:已知二次函數(shù)y=-x2+4x的值為3。求自變量x的值。
分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反過來,解方程x2-4x+3=0又可以看作已知二次函數(shù)y=x2-4+3的值為0,求自變量x的值。
一般地,我們可以利用二次函數(shù)y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0。
(二)問題的討論
二次函數(shù)(1)y=x2+x-2;
(2) y=x2-6x+9;
(3) y=x2-x+0。
的圖象如圖26.2-2所示。
(1)以上二次函數(shù)的圖象與x軸有公共點嗎?如果有,有多少個交點,公共點的橫坐標是多少?
(2)當x取公共點的橫坐標時,函數(shù)的值是多少?由此,你能得出相應(yīng)的一元二次方程的根嗎?
先畫出以上二次函數(shù)的圖象,由圖像學(xué)生展開討論,在老師的引導(dǎo)下回答以上的問題。
可以看出:
(1)拋物線y=x2+x-2與x軸有兩個公共點,它們的橫坐標是-2,1。當x取公共點的橫坐標時,函數(shù)的值是0。由此得出方程x2+x-2=0的根是-2,1。
(2)拋物線y=x2-6x+9與x軸有一個公共點,這點的橫坐標是3。當x=3時,函數(shù)的值是0。由此得出方程x2-6x+9=0有兩個相等的實數(shù)根3。
(3)拋物線y=x2-x+1與x軸沒有公共點, 由此可知,方程x2-x+1=0沒有實數(shù)根。
總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點的橫坐標就是一元二次方程 =0的根。
(三)歸納
一般地,從二次函數(shù)y=ax2+bx+c的圖象可知,
(1)如果拋物線y=ax2+bx+c與x軸有公共點,公共點的橫坐標是x0,那么當x=x0時,函數(shù)的值是0,因此x=x0就是方程ax2+bx+c=0的一個根。
(2)二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應(yīng)著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。
由上面的結(jié)論,我們可以利用二次函數(shù)的圖象求一元二次方程的根。由于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的。
(四)例題
例 利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1)。
解:作y=x2-2x-2的圖象(如圖),它與x軸的公共點的橫坐標大約是-0.7,2.7。
所以方程x2-2x-2=0的實數(shù)根為x1-0.7,x22.7。
七 小結(jié)
二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應(yīng)著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。
。
八 板書設(shè)計
用函數(shù)觀點看一元二次方程
拋物線y=ax2+bx+c與方程ax2+bx+c=0的解之間的關(guān)系
例題
二次函數(shù)教案4
【知識與技能】
1.理解具體情景中二次函數(shù)的意義,理解二次函數(shù)的概念,掌握二次函數(shù)的一般形式.
2.能夠表示簡單變量之間的二次函數(shù)關(guān)系式,并能根據(jù)實際問題確定自變量的取值范圍.
【過程與方法】
經(jīng)歷探索,分析和建立兩個變量之間的二次函數(shù)關(guān)系的'過程,進一步體驗如何用數(shù)學(xué)的方法描述變量之間的數(shù)量關(guān)系.
【情感態(tài)度】
體會數(shù)學(xué)與實際生活的密切聯(lián)系,學(xué)會與他人合作交流,培養(yǎng)合作意識.
【教學(xué)重點】
二次函數(shù)的概念.
【教學(xué)難點】
在實際問題中,會寫簡單變量之間的二次函數(shù)關(guān)系式教學(xué)過程.
一、情境導(dǎo)入,初步認識
1.教材P2“動腦筋”中的兩個問題:矩形植物園的面積S(2)與相鄰于圍墻面的每一面墻的長度x()的關(guān)系式是S=-2x2+100x,(0 2.對于實際問題中的二次函數(shù),自變量的取值范圍是否會有一些限制呢?有. 二、思考探究,獲取新知 二次函數(shù)的概念及一般形式 在上述學(xué)生回答后,教師給出二次函數(shù)的定義:一般地,形如=ax2+bx+c(a, b,c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù),其中x是自變量,a,b,c分別是函數(shù)解析式的二次項系數(shù)、一次項系數(shù)和常數(shù)項. 注意:①二次函數(shù)中二次項系數(shù)不能為0.②在指出二次函數(shù)中各項系數(shù)時,要連同符號一起指出. 目標: 。1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。 。2)注重學(xué)生參與,聯(lián)系實際,豐富學(xué)生的感性認識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣 重點難點: 能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。 過程: 一、試一試 1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結(jié)果填寫在下表的空格 中, AB長x(m)123456789 BC長(m)12 面積y(m2)48 2.x的值是否可以任意取?有限定范圍嗎? 3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個函數(shù)的關(guān)系式, 對于1.,可讓學(xué)生根據(jù)表中給出的'AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式. 二、提出問題 某商店將每 件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大? 在這個問題中,可提出如下問題供學(xué)生思考并 回答: 1.商品的利潤與售價、進價以及銷售量之間有什么關(guān)系? 2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多 少元? 3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷售約多少件商品? 4.x的值是否可以任意取?如果不能任意取,請求出它的范圍, 5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。 將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為: y=-2x2+20x (0<x<10)……………………………(1) 將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y =-100x2+100x+20D (0≤x≤2)……………………(2) 三、觀察;概括 1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答; (1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個) (2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式? (分別是二次多項式 ) (3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的) (4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點 ? 讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。 2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項. 四、課堂練習(xí) 1.(口答)下列函數(shù)中,哪些是二次函數(shù)? (1)y= 5x+1 (2)y=4x2-1 (3)y=2x3-3x2 (4)y=5x4-3x+1 2.P3練習(xí)第1,2題。 五、小結(jié) 1.請敘述二次函數(shù)的定義. 2,許多實際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實 際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。 I.定義與定義表達式一般地,自變量x和因變量y之間存在如下關(guān)系: y=ax^2+bx+c (a,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.) 則稱y為x的`二次函數(shù)。 二次函數(shù)表達式的右邊通常為二次三項式。 II.二次函數(shù)的三種表達式一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0) 頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)] 交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線] 注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系: h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a III.二次函數(shù)的圖像在平面直角坐標系中作出二次函數(shù)y=x^2的圖像, 可以看出,二次函數(shù)的圖像是一條拋物線。 學(xué)習(xí)目標: 1、能解釋二次函數(shù) 的圖像的位置關(guān)系; 2、體會本節(jié)中圖形的變化與 圖形上的點的坐標變化之間的關(guān)系(轉(zhuǎn)化),感受形數(shù) 結(jié)合的數(shù)學(xué)思想等。 學(xué)習(xí)重點與難點: 對二次函數(shù) 的圖像的位置關(guān)系解釋和研究問題的數(shù)學(xué)方法的感受是學(xué)習(xí)重點;難點是對數(shù)學(xué)問題研究問題方法的感受和領(lǐng)悟。 學(xué)習(xí)過程: 一、知識準備 本節(jié)課的學(xué)習(xí)的內(nèi)容是課本P12-P14的內(nèi)容,內(nèi)容較長,課本上問題較多,需要你操作、觀察、思考和概括,請你注意:學(xué)習(xí)時要圈、點、勾、畫,隨時記錄甚至批注課本,想想那個人是如何研究出來的。你有何新的發(fā)現(xiàn)呢? 二、學(xué)習(xí)內(nèi)容 1.思考:二次函數(shù) 的圖象是個什么圖形?是拋物線嗎?為什么?(請你仔細看課本P12-P13,作出合理的解釋) x -3 -2 -1 0 1 2 3 類似的:二次函數(shù) 的圖象與函數(shù) 的圖象有什么關(guān)系? 它的對稱軸、頂點、最值、增減性如何? 2.想一想:二次函數(shù) 的圖象是拋物線嗎?如果結(jié)合下表和看課本P13-P14你的解釋是什么? x -8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6 類似的:二次函數(shù) 的圖象與二次函數(shù) 的圖象有什么關(guān)系 ?它的對稱軸、頂點呢?它的對稱軸、頂點、最值、增減性如何呢 三、知識梳理 1、二次函數(shù) 圖像的形狀,位置的關(guān)系是: 2、它們的性質(zhì)是: 四、達標測試 、睂佄锞y=4x2向上平移3個單位,所得的拋物線的函數(shù)式是 。 將拋物線y=-5x2+1向下平移5個單位,所得的.拋物線的函數(shù)式是 。 將函數(shù)y=-3x2+4的圖象向 平移 個單位可得y=-3x2的圖象; 將y=2x2-7的圖象向 平移 個單位得到可由 y=2x2的圖象。 將y=x2-7的圖象向 平移 個單位 可得到 y=x2+2的圖象。 2.拋物線y=-3(x-1)2可以看作是拋物線y=-3x2沿x 軸 平移了 個單位; 拋物線y=-3(x+1)2可以看作是拋物線y=-3x2沿x軸 平移了 個單位. 拋物線y=-3(x-1)2的頂點是 ;對稱軸 是 ; 拋物線y=-3(x+1)2的頂點是 ;對稱軸是 . 3.拋物線y=-3(x-1)2在對稱軸(x=1)的左側(cè),即當x 時, y隨著x的增大而 ; 在對稱軸(x=1)右側(cè),即當x 時, y隨著x的增大而 .當x= 時,函數(shù)y有最 值,最 值是 ; 二次 函數(shù)y=2x2+5的圖像是 ,開口 ,對稱軸是 ,當x= 時,y有最 值,是 。 4.將函數(shù)y=3 (x-4)2的圖象沿x軸對折后得到的函數(shù)解析式是 ; 將函數(shù)y=3(x-4)2的 圖象沿y軸對折后得到的函數(shù)解析式是 ; 5.把拋物線y=a(x-4)2向左平移6個單位后得到拋物線y=- 3(x-h)2的圖象,則a= ,h= . 函數(shù)y=(3x+6)2的圖象是由函數(shù) 的圖象向左平移5個單位得到的,其圖象開口向 ,對稱軸是 ,頂點坐標是 ,當x 時,y隨x的增大而增大,當x= 時,y有最 值是 . 6.已知二次函數(shù)y=ax2+c ,當x取x1,x2(x1x2), x1,x2分別是A,B兩點的橫坐標)時,函數(shù)值相等, 則當x取x1+x2時,函數(shù)值為 ( ) A. a+c B. a-c C. c D. c 7.已知二次函數(shù)y=a(x-h)2, 當x=2時有最大值,且此函數(shù)的圖象經(jīng)過點(1,-3),求此函數(shù)的解析式,并指出當x為何值時,y隨x的增大而增大? 一、重視每一堂復(fù)習(xí)課 數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。 二、重視每一個學(xué)生 學(xué)生是課堂的主體,離開學(xué)生談?wù)n堂效率肯定是行不通的。而我校的學(xué)生數(shù)學(xué)基礎(chǔ)大多不太好,上課的積極性普遍不高,對學(xué)習(xí)的熱情也不是很高,這些都是十分現(xiàn)實的事情,既然現(xiàn)狀無法更改,那么我們只能去適應(yīng)它,這就對我們老師提出了更高的要求 三、做好課外與學(xué)生的溝通 學(xué)生對你教學(xué)理念認同和教學(xué)常規(guī)配合與否,功夫往往在課外,只有在課外與學(xué)生多進行交流和溝通,和學(xué)生建立起比較深厚的師生情誼,那么最頑皮的學(xué)生也能在他喜歡的老師的課堂上聽進一點 四、要多了解學(xué)生 你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進教學(xué)方法。 二次函數(shù)教學(xué)方法一 一、立足教材,夯實雙基: 進行中考數(shù)學(xué)復(fù)習(xí)的時候,要立足于教材,重新梳理教材中的典例和習(xí)題,就顯得尤為重要。并且要讓學(xué)生在掌握的基礎(chǔ)上,能夠做到知識的延伸和遷移,讓解題方法、技巧在學(xué)生遇到相似問題時,能在頭腦中再現(xiàn) 二、立足課堂,提高效率: 做到教師入題海,學(xué)生出題海。教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。 三、教師在設(shè)計教學(xué)目標時,要做到胸中有書,目中有人 讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達到最佳的復(fù)習(xí)效果。 四、激發(fā)興趣,提高質(zhì)量: 興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要。因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗成功的快感。這樣他們才會更有興趣的學(xué)習(xí)下去。 二次函數(shù)教學(xué)方法二 1、質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的.主體意識,必須鼓勵學(xué)生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。 2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學(xué)模型。 3、生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚,F(xiàn)在對學(xué)生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。 4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。 4二次函數(shù)教學(xué)方法三 1、教學(xué)案例、教學(xué)設(shè)計、教學(xué)實錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計)是事先設(shè)想的教育教學(xué)思路,是對準備實施的教育措施的簡要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。 2、教學(xué)案例與教學(xué)實錄:它們同樣是對教育教學(xué)情境的描述,但教學(xué)實錄是有聞必錄(事實判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。 3、教學(xué)案例與敘事研究的聯(lián)系與區(qū)別:從“情景故事”的意義上講,教育敘事研究報告也是一種“教育案例”,但“教學(xué)案例”特指有典型意義的、包含疑難問題的、多角度描述的經(jīng)過研究并加上作者反思(或自我點評)的教學(xué)敘事; 4、教學(xué)案例必須從教學(xué)任務(wù)分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。 教學(xué)目標: 會用待定系數(shù)法求二次函數(shù)的解析式,能結(jié)合二次函數(shù)的圖象掌握二次函數(shù)的性質(zhì),能較熟練地利用函數(shù)的性質(zhì)解決函數(shù)與圓、三角形、四邊形以及方程等知識相結(jié)合的綜合題。 重點難點: 重點;用待定系數(shù)法求函數(shù)的解析式、運用配方法確定二次函數(shù)的特征。 難點:會運用二次函數(shù)知識解決有關(guān)綜合問題。 教學(xué)過程: 一、例題精析,強化練習(xí),剖析知識點 用待定系數(shù)法確定二次函數(shù)解析式. 例:根據(jù)下列條件,求出二次函數(shù)的解析式。 。1)拋物線y=ax2+bx+c經(jīng)過點(0,1),(1,3),(-1,1)三點。 。2)拋物線頂點P(-1,-8),且過點A(0,-6)。 。3)已知二次函數(shù)y=ax2+bx+c的圖象過(3,0),(2,-3)兩點,并且以x=1為對稱軸。 (4)已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過一次函數(shù)y=-3/2x+3的圖象與x軸、y軸的交點;且過(1,1),求這個二次函數(shù)解析式,并把它化為y=a(x-h(huán))2+k的形式。 學(xué)生活動:學(xué)生小組討論,題目中的四個小題應(yīng)選擇什么樣的函數(shù)解析式?并讓學(xué)生闡述解題方法。 教師歸納:二次函數(shù)解析式常用的有三種形式:(1)一般式:y=ax2+bx+c(a≠0) 。2)頂點式:y=a(x-h(huán))2+k(a≠0)(3)兩根式:y=a(x-x1)(x-x2)(a≠0) 當已知拋物線上任意三點時,通常設(shè)為一般式y(tǒng)=ax2+bx+c形式。 當已知拋物線的頂點與拋物線上另一點時,通常設(shè)為頂點式y(tǒng)=a(x-h(huán))2+k形式。 當已知拋物線與x軸的`交點或交點橫坐標時,通常設(shè)為兩根式y(tǒng)=a(x-x1)(x-x2) 強化練習(xí):已知二次函數(shù)的圖象過點A(1,0)和B(2,1),且與y軸交點縱坐標為m。 。1)若m為定值,求此二次函數(shù)的解析式; 。2)若二次函數(shù)的圖象與x軸還有異于點A的另一個交點,求m的取值范圍。 二、知識點串聯(lián),綜合應(yīng)用 例:如圖,拋物線y=ax2+bx+c過點A(-1,0),且經(jīng)過直線y=x-3與坐標軸的兩個交 【知識與技能】 1.會用描點法畫二次函數(shù)y=ax2+bx+c的圖象. 2.會用配方法求拋物線y=ax2+bx+c的頂點坐標、開口方向、對稱軸、y隨x的增減性. 3.能通過配方求出二次函數(shù)y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實際問題中的最大值或最小值. 【過程與方法】 1.經(jīng)歷探索二次函數(shù)y=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的過程,體會建立二次函數(shù)y=ax2+bx+c(a≠0)對稱軸和頂點坐標公式的必要性. 2.在學(xué)習(xí)y=ax2+bx+c(a≠0)的性質(zhì)的`過程中,滲透轉(zhuǎn)化(化歸)的思想. 【情感態(tài)度】 進一步體會由特殊到一般的化歸思想,形成積極參與數(shù)學(xué)活動的意識. 【教學(xué)重點】 、儆门浞椒ㄇ髖=ax2+bx+c的頂點坐標;②會用描點法畫y=ax2+bx+c的圖象并能說出圖象的性質(zhì). 【教學(xué)難點】 能利用二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點坐標公式,解決一些問題,能通過對稱性畫出二次函數(shù)y=ax2+bx+c(a≠0)的圖象. 一、情境導(dǎo)入,初步認識 請同學(xué)們完成下列問題. 1.把二次函數(shù)y=-2x2+6x-1化成y=a(x-h)2+k的形式. 2.寫出二次函數(shù)y=-2x2+6x-1的開口方向,對稱軸及頂點坐標. 3.畫y=-2x2+6x-1的圖象. 4.拋物線y=-2x2如何平移得到y(tǒng)=-2x2+6x-1的圖象. 5.二次函數(shù)y=-2x2+6x-1的y隨x的增減性如何? 【教學(xué)說明】上述問題教師應(yīng)放手引導(dǎo)學(xué)生逐一完成,從而領(lǐng)會y=ax2+bx+c與y=a(x-h)2+k的轉(zhuǎn)化過程. 二、思考探究,獲取新知 探究1 如何畫y=ax2+bx+c圖象,你可以歸納為哪幾步? 學(xué)生回答、教師點評: 一般分為三步: 1.先用配方法求出y=ax2+bx+c的對稱軸和頂點坐標. 2.列表,描點,連線畫出對稱軸右邊的部分圖象. 3.利用對稱點,畫出對稱軸左邊的部分圖象. 探究2 二次函數(shù)y=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎? 教學(xué)目標 熟練地掌握二次函數(shù)的最值及其求法。 重 點 二次函數(shù)的的最值及其求法。 難 點 二次函數(shù)的最值及其求法。 一、引入 二次函數(shù)的最值: 二、例題分析: 例1:求二次函數(shù) 的最大值以及取得最大值時 的值。 變題1:⑴、 ⑵、 ⑶、 變題2:求函數(shù) ( )的最大值。 變題3:求函數(shù) ( )的最大值。 例2:已知 ( )的最大值為3,最小值為2,求 的.取值范圍。 例3:若 , 是二次方程 的兩個實數(shù)根,求 的最小值。 三、隨堂練習(xí): 1、若函數(shù) 在 上有最小值 ,最大值2,若 , 則 =________, =________。 2、已知 , 是關(guān)于 的一元二次方程 的兩實數(shù)根,則 的最小值是( ) A、0 B、1 C、-1 D、2 3、求函數(shù) 在區(qū)間 上的最大值。 四、回顧小結(jié) 本節(jié)課了以下內(nèi)容: 1、二次函數(shù)的的最值及其求法。 課后作業(yè) 班級:( )班 姓名__________ 一、基礎(chǔ)題: 1、函數(shù) ( ) A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2 2、函數(shù) 的最大值是4,且當 =2時, =5,則 =______, =_______。 二、提高題: 3、試求關(guān)于 的函數(shù) 在 上的最大值 ,高三。 4、已知函數(shù) 當 時,取最大值為2,求實數(shù) 的值。 5、已知 是方程 的兩實根,求 的最大值和最小值。 三、題: 6、已知函數(shù) , ,其中 ,求該函數(shù)的最大值與最小值, 并求出函數(shù)取最大值和最小值時所對應(yīng)的自變量 的值。 教學(xué)目標: 1、使學(xué)生進一步理解二次函數(shù)的基本性質(zhì); 2、滲透解析幾何,數(shù)形結(jié)合,函數(shù)等數(shù)學(xué)思想.培養(yǎng)學(xué)生發(fā)現(xiàn)問題解決問題,及邏輯思維的能力. 3、使學(xué)生參與教學(xué)過程,通過主體的積極思維,體驗感悟數(shù)學(xué).逐步建立數(shù)學(xué)的觀念,培養(yǎng)學(xué)生獨立地獲取知識的能力. 教學(xué)重點:初步理解數(shù)形結(jié)合的數(shù)學(xué)思想 教學(xué)難點:初步理解數(shù)形結(jié)合的數(shù)學(xué)思想 教學(xué)用具:微機 教學(xué)方法:探究式、小組合作學(xué)習(xí) 教學(xué)過程: 例1、已知:拋物線y=x2-(m2-1)x-2m2-2 、徘笞C:無論m取什么實數(shù),拋物線與x軸一定有兩個交點 、苖取什么實數(shù)時,兩交點間距離最短?是多少? 解: △ =(m2-1)2+4(2m2+2) =m4-2m2+1+8m2+8 =m4+6m2+9 =(m2+3)2 m2≥0 ∴m2+3>0 ∴△>0 ∴拋物線與x軸有兩個交點 問題:為什么說當△>0時,拋物線y =ax2+bx+c與x軸有兩個交點.(能否從數(shù)和形兩方面說明) 設(shè)計意圖:在課堂上創(chuàng)設(shè)讓學(xué)生說數(shù)學(xué)的機會,學(xué)會合作學(xué)習(xí),以達到①經(jīng)驗共享,在思維的碰撞中共同提高.②學(xué)會合作,消除個人中心.③發(fā)現(xiàn)自我,提高參與度.④弘揚個體的主體性,形成健康,豐富的個性. 數(shù):點在曲線上,點的坐標滿足曲線的方程.反之,曲線方程的每一個實數(shù)解對應(yīng)的點都在曲線上.拋物線與x軸的交點,既在拋物線上,又在x軸上.所以交點的坐標既滿足拋物線的解析式,也滿足x軸的解析式.設(shè)交點坐標為(x,y) ∴ 這樣交點問題就轉(zhuǎn)化成求這個二元二次方程組的解.代入y =0,消去y,轉(zhuǎn)化成ax2+bx+c=0這個一元二次方程求根問題.根據(jù)以前學(xué)過的知識,當△>0時, ax2+bx+c=0有兩個不相等的實根.∴y =ax2+bx+c y =0 有兩個不等的實數(shù)解 ∴拋物線與x軸交于兩個不同的點. 形:頂點在x軸上方,且開口向下.或者頂點在x軸下方,且開口向上. 設(shè)計意圖:滲透解析幾何的基本思想 使學(xué)生掌握轉(zhuǎn)化思想使學(xué)生在解題過程中,感知數(shù)學(xué)的直觀性和形式化這二重性.掌握數(shù)形結(jié)合,分類討論的思想方法.逐步學(xué)會數(shù)學(xué)的思維. 轉(zhuǎn)化成代數(shù)語言為: 小結(jié):第一種方法,根據(jù)解析幾何的基本思想.將求曲線的交點問題,轉(zhuǎn)化成求方程組的解的問題. 第二種方法,借助于圖象思考問題,比較直觀.發(fā)現(xiàn)規(guī)律后,再用數(shù)學(xué)的符號語言將其形式化.這既體現(xiàn)了數(shù)學(xué)中的數(shù)形結(jié)合的思想方法,也是探索解數(shù)學(xué)問題的一般方法. 思考:試從數(shù)、形兩方面說明拋物線與x軸的交點個數(shù)與判別 式的符號的關(guān)系. 設(shè)計意圖:數(shù)學(xué)學(xué)習(xí)是一個再創(chuàng)造的過程,不能等同于數(shù)學(xué)知識的匯集,而要讓學(xué)生經(jīng)歷數(shù)學(xué)知識的創(chuàng)造過程.使主體積極地參與到學(xué)習(xí)中去.以數(shù)學(xué)知識為載體,揭示出蘊涵于其中的數(shù)學(xué)思想方法,逐步形成數(shù)學(xué)觀念. 、苖取什么實數(shù)時,兩交點間距離最短?是多少? 解:設(shè)二次函數(shù)與x軸的兩交點為(x1,0),(x2,0) 解法㈠ 由⑴可知m為任何實數(shù)時, 都有△>0 解① ∴ x1+x2=m2-1 x1·x2=-2(m2+1) ∴│x2-x1│= = = = =m2+3 ∴當m =0時,兩交點最小距離為3 這里兩交點間距離是m的函數(shù) 設(shè)計意圖:培養(yǎng)學(xué)生的問題意識.在解題過程中,發(fā)現(xiàn)問題,并能運用已有的數(shù)學(xué)知識,將其一般化,形式化,解決問題,體會數(shù)學(xué)問題解決的一般方法.培養(yǎng)學(xué)生獨立地獲取數(shù)學(xué)知識的能力.滲透函數(shù)思想 問題: 觀察本題兩交點間距離與判別式的值之間有何異同?具有一般的規(guī)律嗎?如何說明. 設(shè)x1、x2 為ax2+bx+c =0的兩根 可以推出: 還可以理解為頂點到x軸距離最短. 設(shè)計意圖:在對比、分析中,明確概念,揭示知識間的聯(lián)系,幫助學(xué)生建立良好的認知結(jié)構(gòu). 小結(jié):觀察這道題的結(jié)論,我們猜測出規(guī)律,將其一般化,推導(dǎo)出這個公式,這是學(xué)習(xí)數(shù)學(xué)知識的一般方法. 解法㈡:用十字相乘法或求根公式法求根. 思考:一元二次方程與二次函數(shù)的關(guān)系. 思考:求m取什么實數(shù)時,y =x2-(m2-1)x -2 m2-2被直線y =2所截得的`線段最短?是多少? 練習(xí): 觀察函數(shù) 的圖象,回答: (1)y>0時,x的取值范圍如何? 。2)y=0時,x取什么值? (1)y<0時,x的取值范圍如何? 小結(jié):數(shù)與形是數(shù)學(xué)中相互依賴的兩個方面.圖形比較直觀,可以啟發(fā)思路;而數(shù)學(xué)的嚴格證明也是必不可少的.直觀性和形式化是數(shù)學(xué)的兩重性. 探究活動 探究問題: 欣欣日用品零售商店,從某公司批發(fā)部每月按銷售合同以批發(fā)單價每把8元購進雨傘(數(shù)量至少為100把),欣欣商店根據(jù)銷售記錄,這批雨傘以零售單價每把為14元出售時,月銷售量為100把,數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c 的圖象,初中數(shù)學(xué)教案《數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c 的圖象》。如果零售單價每降價0.1元 , 月銷售量就要增加5把. (1) 欣欣日用品零售商店以零售單價14元出售時,一個月的利潤為多少元? (2) 欣欣日用品零售商店為了擴大銷售記錄,現(xiàn)實行降價銷售,問分別降價0.2元、0.8元、1.2元、1.6元、2.4元、3元時的利潤是多少? (3) 欣欣日用品零售商店實行降價銷售后,問降價多少元時利潤最大?最大利潤為多少元? (4) 現(xiàn)在該公司的批發(fā)部為了再次擴大這種雨傘的銷售量,給零售商制定如下優(yōu)惠措施:如果零售商每月從批發(fā)部購進雨傘的數(shù)量超過100把,其超過100把的部分每把按原價九五折(即百分之95)付費,但零售價每把不能低于10元。欣欣日用品零售商店應(yīng)將這種雨傘的零售單價定為每把多少元出售時,才能使這種雨傘的月銷售利潤最大?最大月銷售利潤是多少元?(銷售利潤=銷售款額—進貨款額) 解:(1)(14—8) (元) 。2)638元、728元、748元、792元、792元、750元。 (3)設(shè)降價 元時利潤最大,最大利潤為 元 = = = ∴ 當 時, 有最大值 元 。4)設(shè)降價 元時利潤最大,利潤為 元 。ㄆ渲 )。 化簡,得 。 , ∴ 當 時, 有最大值。 ∴ 。 數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c 的圖象 一.學(xué)習(xí)目標 1.經(jīng)歷對實際問題情境分析確定二次函數(shù)表達式的過程,體會二次函數(shù)意義。 2.了解二次函數(shù)關(guān)系式,會確定二次函數(shù)關(guān)系式中各項的系數(shù)。 二.知識導(dǎo)學(xué) 。ㄒ唬┣榫皩(dǎo)學(xué) 1.一粒石子投入水中,激起的波紋不斷向外擴展,擴大的圓的面積S與半徑r之間的函數(shù)關(guān)系式是 。 2.用16米長的籬笆圍成長方形的生物園飼養(yǎng)小兔,怎樣圍可使小兔的活動范圍較大? 設(shè)長方形的長為x 米,則寬為 米,如果將面積記為y平方米,那么變量y與x之間的函數(shù)關(guān)系式為 . 3.要給邊長為x米的正方形房間鋪設(shè)地板,已知某種地板的價格為每平方米240元,踢腳線的價格為每米30元,如果其他費用為1000元,門寬0.8米,那么總費用y為多少元? 在這個問題中,地板的費用與 有關(guān),為 元,踢腳線的費用與 有關(guān),為 元;其他費用固定不變?yōu)?元,所以總費用y(元)與x(m)之間的函數(shù)關(guān)系式是 。 。ǘw納提高。 上述函數(shù)函數(shù)關(guān)系有哪些共同之處?它們與一次函數(shù)、反比例函數(shù)的關(guān)系式有什么不同? 一般地,我們稱 表示的函數(shù)為二次函數(shù)。其中 是自變量, 函數(shù)。 一般地,二次函數(shù) 中自變量x的取值范圍是 ,你能說出上述三個問題中自變量的取值范圍嗎? 。ㄈ┑淅治 例1、判斷:下列函數(shù)是否為二次函數(shù),如果是,指出其中常數(shù)a.b.c的`值. (1) y=1— (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2 (5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c 例2.當k為何值時,函數(shù) 為二次函數(shù)? 例3.寫出下列各函數(shù)關(guān)系,并判斷它們是什么類型的函數(shù). ⑴正方體的表面積S(cm2)與棱長a(cm)之間的函數(shù)關(guān)系; 、茍A的面積y(cm2)與它的周長x(cm)之間的函數(shù)關(guān)系; 、悄撤N儲蓄的年利率是1.98%,存入10000元本金,若不計利息,求本息和y(元)與所存年數(shù)x之間的函數(shù)關(guān)系; 、攘庑蔚膬蓷l對角線的和為26cm,求菱形的面積S(cm2)與一對角線長x(cm)之間的函數(shù)關(guān)系. 三.鞏固拓展 1.已知函數(shù) 是二次函數(shù),求m的值. 2. 已知二次函數(shù) ,當x=3時,y= -5,當x= -5時,求y的值. 3.一個長方形的長是寬的1.6倍,寫出這個長方形的面積S與寬x之間函數(shù)關(guān)系式。 4.一個圓柱的高與底面直徑相等,試寫出它的表面積S與底面半徑r之間的函數(shù)關(guān)系式 5.用一根長為40 cm的鐵絲圍成一個半徑為r的扇形,求扇形的面積y與它的半徑x之間的函數(shù)關(guān)系式.這個函數(shù)是二次函數(shù)嗎?請寫出半徑r的取值范圍. 6. 一條隧道的截面如圖所示,它的上部是一個半圓,下部是一個矩形,矩形的一邊長2.5 m. 、徘笏淼澜孛娴拿娣eS(m2)關(guān)于上部半圓半徑r(m)的函數(shù)關(guān)系式; 、魄螽斏喜堪雸A半徑為2 m時的截面面積.(π取3.14,結(jié)果精確到0.1 m2) 課堂練習(xí): 1.判斷下列函數(shù)是否是二次函數(shù),若是,請指出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項。 (1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= . 2.寫出多項式的對角線的條數(shù)d與邊數(shù)n之間的函數(shù)關(guān)系式。 3.某產(chǎn)品年產(chǎn)量為30臺,計劃今后每年比上一年的產(chǎn)量增長x%,試寫出兩年后的產(chǎn)量y(臺)與x的函數(shù)關(guān)系式。 4.圓柱的高h(cm)是常量,寫出圓柱的體積v(cm3)與底面周長C(cm)之間的函數(shù)關(guān)系式。 課外作業(yè): A級: 1.下列函數(shù):(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,屬于二次函數(shù)的 是 (填序號). 2.函數(shù)y=(a-b)x2+ax+b是二次函數(shù)的條件為 . 3.下列函數(shù)關(guān)系中,滿足二次函數(shù)關(guān)系的是( ) A.圓的周長與圓的半徑之間的關(guān)系; B.在彈性限度內(nèi),彈簧的長度與所掛物體質(zhì)量的關(guān)系; C.圓柱的高一定時,圓柱的體積與底面半徑的關(guān)系; D.距離一定時,汽車行駛的速度與時間之間的關(guān)系. 4.某超市1月份的營業(yè)額為200萬元,2、3月份營業(yè)額的月平均增長率為x,求第一季度營業(yè)額y(萬元)與x的函數(shù)關(guān)系式. B級: 5、一塊直角三角尺的形狀與尺寸如圖,若圓孔的半徑為 ,三角尺的厚度為16,求這塊三角尺的體積V與n的函數(shù)關(guān)系式. 6.某地區(qū)原有20個養(yǎng)殖場,平均每個養(yǎng)殖場養(yǎng)奶牛20xx頭。后來由于市場原因,決定減少養(yǎng)殖場的數(shù)量,當養(yǎng)殖場每減少1個時,平均每個養(yǎng)殖場的奶牛數(shù)將增加300頭。如果養(yǎng)殖場減少x個,求該地區(qū)奶?倲(shù)y(頭)與x(個)之間的函數(shù)關(guān)系式。 C級: 7.圓的半徑為2cm,假設(shè)半徑增加xcm 時,圓的面積增加到y(tǒng)(cm2). (1)寫出y與x之間的函數(shù)關(guān)系式; 。2)當圓的半徑分別增加1cm、 時,圓的面積分別增加多少? 。3)當圓的面積為5πcm2時,其半徑增加了多少? 8.已知y+2x2=kx(x-3)(k≠2). (1)證明y是x的二次函數(shù); (2)當k=-2時,寫出y與x的函數(shù)關(guān)系式。 一、說課內(nèi)容: 蘇教版九年級數(shù)學(xué)下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題 二、教材分析: 1、教材的地位和作用 這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。 2、教學(xué)目標和要求: (1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。 (2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力. (3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心. 3、教學(xué)重點:對二次函數(shù)概念的理解。 4、教學(xué)難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。 三、教法學(xué)法設(shè)計: 1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程 2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程 3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程 四、教學(xué)過程: (一)復(fù)習(xí)提問 1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)? (一次函數(shù),正比例函數(shù),反比例函數(shù)) 2.它們的形式是怎樣的? (y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0) 3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對函數(shù)性質(zhì)有什么影響? 【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k≠0的條件,以備與二次函數(shù)中的a進行比較. (二)引入新課 函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)?聪旅嫒齻例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示) 例1、(1)圓的`半徑是r(cm)時,面積s (cm)與半徑之間的關(guān)系是什么? 解:s=πr(r>0) 例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么? 解: y=x(20/2-x)=x(10-x)=-x+10x (0 例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)? 解: y=100(1+x) =100(x+2x+1) = 100x+200x+100(0 教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點? 【設(shè)計意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。 (三)講解新課 以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。 二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。 鞏固對二次函數(shù)概念的理解: 1、強調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。 2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0) 3、為什么二次函數(shù)定義中要求a≠0 ? (若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了) 4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100. 5、b和c是否可以為零? 由例1可知,b和c均可為零. 若b=0,則y=ax2+c; 若c=0,則y=ax2+bx; 若b=c=0,則y=ax2. 注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式. 【設(shè)計意圖】這里強調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。 判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c. (1)y=3(x-1)+1 (2) (3)s=3-2t (4)y=(x+3)- x (5) s=10πr (6) y=2+2x (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù)) 【設(shè)計意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實踐操作中。 (四)鞏固練習(xí) 1.已知一個直角三角形的兩條直角邊長的和是10cm。 (1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積; (2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān) 于x的函數(shù)關(guān)系式。 【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。 2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。 (1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子; (2)這兩個函數(shù)中,那個是x的二次函數(shù)? 【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。 3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3 (1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式; (2)兩個函數(shù)中,都是二次函數(shù)嗎? 【設(shè)計意圖】此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復(fù)習(xí),并與今天所學(xué)知識聯(lián)系起來。 4. 籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍. 【設(shè)計意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。 (五)拓展延伸 1. 已知二次函數(shù)y=ax2+bx+c,當 x=0時,y=0;x=1時,y=2;x= -1時,y=1.求a、b、c,并寫出函數(shù)解析式. 【設(shè)計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個鋪墊。 2.確定下列函數(shù)中k的值 (1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______ (2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______ 【設(shè)計意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項系數(shù)不為0. (六) 小結(jié)思考: 本節(jié)課你有哪些收獲?還有什么不清楚的地方? 【設(shè)計意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補充。 (七) 作業(yè)布置: 必做題: 1. 正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎? 2. 在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。 選做題: 1.已知函數(shù) 是二次函數(shù),求m的值。 2.試在平面直角坐標系畫出二次函數(shù)y=x2和y=-x2圖象 【設(shè)計意圖】作業(yè)中分為必做題與選做題,實施分層教學(xué),體現(xiàn)新課標人人學(xué)有價值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。 五、教學(xué)設(shè)計思考 以實現(xiàn)教學(xué)目標為前提 以現(xiàn)代教育理論為依據(jù) 以現(xiàn)代信息技術(shù)為手段 貫穿一個原則——以學(xué)生為主體的原則 突出一個特色——充分鼓勵表揚的特色 滲透一個意識——應(yīng)用數(shù)學(xué)的意識 本節(jié)課在二次函數(shù)y=ax2和y=ax2+c的圖象的基礎(chǔ)上,進一步研究y=a(x-h)2和y=a(x-h)2+k的圖象,并探索它們之間的關(guān)系和各自的性質(zhì).旨在全面掌握所有二次函數(shù)的圖象和性質(zhì)的變化情況.同時對二次函數(shù)的研究,經(jīng)歷了從簡單到復(fù)雜,從特殊到一般的過程:先是從y=x2開始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合學(xué)生的認知特點,體會建立二次函數(shù)對稱軸和頂點坐標公式的必要性. 在教學(xué)中,主要是讓學(xué)生自己動手畫圖象,通過自己的觀察、交流、對比、概括和反思[ 等探索活動,使學(xué)生達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解.并能利用它的性質(zhì)解決問題. 2.4二次函數(shù)y=ax2+bx+c的圖象(一) 教學(xué)目標 (一)教學(xué)知識點[ 1.能夠作出函數(shù)y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關(guān)系.理解a,h,k對二次函數(shù)圖象的影響. 2.能夠正確說出y=a(x-h)2+k圖象的開口方向、對稱軸和頂點坐標. (二)能力訓(xùn)練要求 1.通過學(xué)生自己的探索活動,對二次函數(shù)性質(zhì)的研究,達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解. 2.經(jīng)歷探索二次函數(shù)的圖象的作法和性質(zhì)的過程,培養(yǎng)學(xué)生的探索能力. (三)情感與價值觀要求 1.經(jīng)歷觀察、猜想、總結(jié)等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀點. 2.讓學(xué)生學(xué)會與人合作,并能與他人交流思維的過程和結(jié)果. 教學(xué)重點 1.經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的作法和性質(zhì)的過程. 2.能夠作出y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關(guān)系,理解a、h、k對二次函數(shù)圖象的影響. 3.能夠正確說出y=a(x-h)2+k圖象的開口方向、對稱軸和頂點坐標. 教學(xué)難點 能夠作出y=a(x-h)2和y=a(x-h)2+k的圖象,并能夠理解它與y=ax2的圖象的關(guān)系,理解a、h、k對二次函數(shù)圖象的影響. 教學(xué)方法 探索比較總結(jié)法. 教具準備 投影片四張 第一張:(記作2.4.1 A) 第二張:(記作2.4.1 B) 第三張:(記作2.4.1 C) 第四張:(記作2.4.1 D) 教學(xué)過程 、.創(chuàng)設(shè)問題情境、引入新課 [師]我們已學(xué)習(xí)過兩種類型的二次函數(shù),即y=ax2與y=ax2+c,知道它們都是軸對稱圖形,對稱軸都是y軸,有最大值或最小值.頂點都是原點.還知道y=ax2+c的圖象是函數(shù)y=ax2的圖象經(jīng)過上下移動得到的,那么y=ax2的圖象能否左右移動呢?它左右移動后又會得到什么樣的函數(shù)形式,它又有哪些性質(zhì)呢?本節(jié)課我們就來研究有關(guān)問題. Ⅱ.新課講解 一、比較函數(shù)y=3x2與y=3(X-1)2的圖象的性質(zhì). 投影片:(2.4 A) (1)完成下表,并比較3x2和3(x-1)2的值, 它們之間有什么關(guān)系? X -3 -2 -1 0 1 2 3 4 3x2 3(x-1)2 (2)在下圖中作出二次函數(shù)y=3(x-1)2的圖象.你是怎樣作的? (3)函數(shù)y=3(x-1)2的圖象與y=3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點坐標分別是什么? (4)x取哪些值時,函數(shù)y=3(x-1)2的值隨x值的增大而增大?x取哪些值時,函數(shù)y=3(x-1)2的值隨x值的增大而減小? [師]請大家先自己填表,畫圖象,思考每一個問題,然后互相討論,總結(jié). [生](1)第二行從左到右依次填:27.12,3,0,3, 12,27,48;第三行從左到右依次填48,27,12,3,0,3, 12,27. (2)用描點法作出y=3(x-1)2的圖象,如上圖. (3)二次函數(shù))y=3(x-1)2的圖象與y=3x2的圖象形狀相同,開口方向也相同,但對稱軸和頂點坐標不同,y=3(x-1)2的圖象的對稱軸是直線x=1,頂點坐標是(1,0). (4)當x1時,函數(shù)y=3(x-1)2的值隨x值的增大而增大,x1時,y=3(x-1)2的值隨x值的增大而減小. [師]能否用移動的觀點說明函數(shù)y=3x2與y=3(x-1)2的圖象之間的關(guān)系呢? [生]y=3(x-1)2的圖象可以看成是函數(shù))y=3x2的圖象整體向右平移得到的. [師]能像上節(jié)課那樣比較它們圖象的性質(zhì)嗎? [生]相同點: a.圖象都中拋物線,且形狀相同,開口方向相同. b. 都是軸對稱圖形. c.都有最小值,最小值都為0. d.在對稱軸左側(cè),y都隨x的增大而減小.在對稱軸右側(cè),y都隨x的增大而增大. 不同點: a.對稱軸不同,y=3x2的對稱軸是y軸y=3(x-1)2的對稱軸是x=1. b. 它們的位置不問.[來源:Www.zk5u.com] c. 它們的頂點坐標不同. y=3x2的頂點坐標為(0,0),y=3(x-1)2的頂點坐標為(1,0), 聯(lián)系: 把函數(shù)y=3x2的圖象向右移動一個單位,則得到函數(shù)y=3(x-1)2的圖像. 二、做一做 投影片:(2.4.1 B) 在同一直角坐標系中作出函數(shù)y=3(x-1)2和y=3(x-1)2+2的圖象.并比較它們圖象的性質(zhì). [生]圖象如下 它們的圖象的性質(zhì)比較如下: 相同點: a.圖象都是拋物線,且形狀相同,開口方向相同. b. 都足軸對稱圖形,對稱軸都為x=1. c. 在對稱軸左側(cè),y都隨x的增大而減小,在對稱軸右側(cè),y都隨x的增大而增大. 不同點: a.它們的頂點不同,最值也不同.y=3(x-1)2的頂點坐標為(1.0),最小值為0.y=3(x-1)2+2的頂點坐標為(1,2),最小值為2. b. 它們的位置不同. 聯(lián)系: 把函數(shù)y=3(x-1)2的圖象向上平移2個單位,就得到了函數(shù)y=3(x-1)2+2的圖象. 三、總結(jié)函數(shù)y=3x2,y=3(x-1)2,y=3(x-1)2+2的圖象之間的關(guān)系. [師]通過上畫的討論,大家能夠總結(jié)出這三種函數(shù)圖象之間的關(guān)系嗎? [生]可以. 二次函數(shù)y=3x2,y=3(x-1)2,y=3(x-1)2+2的圖象都是拋物線.并且形狀相同,開口方向相同,只是位置不同,頂點不同,對稱軸不同,將函數(shù)y=3x2的圖象向右平移1個單位,就得到函數(shù)y=3(x-1)2的圖象;再向上平移2個單位,就得到函數(shù)y=3(x-1)2+2的圖象. [師]大家還記得y=3x2與y=3x2-1的圖象之間的關(guān)系嗎? [生]記得,把函數(shù)y=3x2向下平移1個平位,就得到函數(shù)y=3x2-1的圖象. [師]你能系統(tǒng)總結(jié)一下嗎? [生]將函數(shù)y=3x2的圖象向下移動1個單位,就得到了函數(shù)y=3x2-1的圖象,向上移動1個單位,就得到函數(shù)y=3x2+1的圖象;將y=3x2的圖象向右平移動1個單位,就得到函數(shù)y=3(x-1)2的圖象:向左移動1個單位,就得到函數(shù)y=3(x+1)2的圖象;由函數(shù)y=3x2向右平移1個單位、再向上平移2個單位,就得到函數(shù)y=3(x-1)2+2的圖象. [師]下面我們就一般形式來進行總結(jié). 投影片:(2.4.1 C) 一般地,平移二次函數(shù)y=ax2的圖象便可得到二次函數(shù)為y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的`圖象. (1)將y=ax2的圖象上下移動便可得到函數(shù)y=ax2+c的圖象,當c0時,向上移動,當c0時,向下移動. (2)將函數(shù)y=ax2的圖象左右移動便可得到函數(shù)y=a(x-h)2的圖象,當h0時,向右移動,當h0時,向左移動. (3)將函數(shù)y=ax2的圖象既上下移,又左右移,便可得到函數(shù)y=a(x-h)+k的圖象. 因此,這些函數(shù)的圖象都是一條拋物線,它們的開口方向,對稱軸和頂點坐標與a,h,k的值有關(guān). 下面大家經(jīng)過討論之后,填寫下表: y=a(x-h)2+k 開口方向 對稱軸 頂點坐標 a0 a0 四、議一議 投影片:(2,4.1 D) (1)二次函數(shù)y=3(x+1)2的圖象與二次函數(shù)y=3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點坐標分別是什么? (2)二次函數(shù)y=-3(x-2)2+4的圖象與二次函數(shù)y=-3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點坐標分別是什么? (3)對于二次函數(shù)y=3(x+1)2,當x取哪些值時,y的值隨x值的增大而增大?當x取哪些值時,y的值隨x值的增大而減小?二次函數(shù)y=3(x+1)2+4呢? [師]在不畫圖象的情況下,你能回答上面的問題嗎? [生](1)二次函數(shù)y=3(x+1)2的圖象與y=3x2的圖象形狀相同,開口方向也相同,但對稱軸和頂點坐標不同,y=3(x+1)2的圖象的對稱軸是直線x=-1,頂點坐標是(-1,0).只要將y=3x2的圖象向左平移1個單位,就可以得到y(tǒng)=3(x+1)2的圖象. (2)二次函數(shù)y=-3(x-2)2+4的圖象與y=-3x2的圖象形狀相同,只是位置不同,將函數(shù)y=-3x2的圖象向右平移2個單位,就得到y(tǒng)=-3(x-2)2的圖象,再向上平移4個單位,就得到y(tǒng)=-3(x-2)2+4的圖象y=-3(x-2)2+4的圖象的對稱軸是直線x=2,頂點坐標是(2,4). (3)對于二次函數(shù)y=3(x+1)2和y=3(x+1)2+4,它們的對稱軸都是x=-1,當x-1時,y的值隨x值的增大而減小;當x-1時,y的值隨x值的增大而增大. Ⅲ.課堂練習(xí) 隨堂練習(xí) 、.課時小結(jié) 本節(jié)課進一步探究了函數(shù)y=3x2與y=3(x-1)2,y=3(x-1)2+2的圖象有什么關(guān)系,對稱軸和頂點坐標分別是什么這些問題.并作了歸納總結(jié).還能利用這個結(jié)果對其他的函數(shù)圖象進行討論. Ⅴ.課后作業(yè) 習(xí)題2.4 、.活動與探究 二次函數(shù)y= (x+2)2-1與y= (x-1)2+2的圖象是由函數(shù)y= x2的圖象怎樣移動得到的?它們之間是通過怎樣移動得到的? 解:y= (x+2)2-1的圖象是由y= x2的圖象向左平移2個單位,再向下平移1個單位得到的,y= (x-1)2+2的圖象是由y= x2的圖象向右平移1個單位,再向上平移2個單位得到的. y= (x+2)2-1的圖象向右平移3個單位,再向上平移3個單位得到y(tǒng)= (x-1)2+2的圖象. y= (x-1)2+2的圖象向左平移3個單位,再向下平移3個單位得到y(tǒng)= (x+2)2-1的圖象. 板書設(shè)計 4.2.1 二次函數(shù)y=ax2+bx+c的圖象(一) 一、1. 比較函數(shù)y=3x2與y=3(x-1)2的 圖象和性質(zhì)(投影片2.4.1 A) 2.做一做(投影片2.4.1 B) 3.總結(jié)函數(shù)y=3x2,y=3(x-1)2y= 3(x-1)2+2的圖象之間的關(guān)系(投影片2.4.1 C) 4.議一議(投影片2.4.1 D) 二、課堂練習(xí) 1.隨堂練習(xí) 2.補充練習(xí) 三、課時小結(jié) 四、課后作業(yè) 備課資料 參考練習(xí) 在同一直角坐標系內(nèi)作出函數(shù)y=- x2,y=- x2-1,y=- (x+1)2-1的圖象,并討論它們的性質(zhì)與位置關(guān)系. 解:圖象略 它們都是拋物線,且開口方向都向下;對稱軸分別為y軸y軸,直線x=-1;頂點坐標分別為(0,0),(0,-1),(-1,-1). y=- x2的圖象向下移動1個單位得到y(tǒng)=- x2-1 的圖象;y=- x2的圖象向左移動1個單位,向下移動1個單位,得到y(tǒng)=- (x+1)2-1的圖象. 【二次函數(shù)教案】相關(guān)文章: 《二次函數(shù)》教案03-02 初中二次函數(shù)教案01-10 二次函數(shù)教學(xué)反思04-16 二次函數(shù)的教學(xué)反思04-22 數(shù)學(xué)二次函數(shù)教學(xué)反思10-06 《二次函數(shù)與一元二次方程》教學(xué)反思08-28 函數(shù)的性質(zhì)教案08-31二次函數(shù)教案5
二次函數(shù)教案6
二次函數(shù)教案7
二次函數(shù)教案8
二次函數(shù)教案9
二次函數(shù)教案10
二次函數(shù)教案11
二次函數(shù)教案12
二次函數(shù)教案13
二次函數(shù)教案14
二次函數(shù)教案15