ww亚洲ww亚在线观看,wwwxxxx日韩高清,真实14初次破初视频在线播放,五月丁香婷婷综合激情,日本熟妇丰满的大屁股,a级免费按摩黄片,黄色视频.wwww

有理數(shù)的加法教案

時間:2024-07-31 12:58:44 教案 我要投稿

有理數(shù)的加法教案

  作為一名辛苦耕耘的教育工作者,常常要寫一份優(yōu)秀的教案,借助教案可以更好地組織教學活動。那么應當如何寫教案呢?下面是小編為大家收集的有理數(shù)的加法教案,希望能夠幫助到大家。

有理數(shù)的加法教案

有理數(shù)的加法教案1

  教學目標

  1,在現(xiàn)實背景中理解有理數(shù)加法的意義。

  2,經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則。

  3,能積極地參與探究有理數(shù)加法法則的活動,并學會與他人交流合作。

  4,能較為熟練地進行有理數(shù)的加法運算,并能解決簡單的實際間題。

  5,在教學中適當滲透分類討論思想

  教學難點

  異號兩數(shù)相加

  知識重點

  和的符號的確定

  教學過程

 。◣熒顒樱┰O計理念

  設置情境

  引入課題回顧用正負數(shù)表示數(shù)量的實際例子;

  在足球比賽中,如果把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。若紅隊進4個球,失2個球,則紅隊的勝球數(shù),可以怎樣表示?藍隊的勝球數(shù)呢?

  師:如何進行類似的有理數(shù)的加法運算呢?這就是我們這節(jié)課一起與大家探討的問題。

 。ǔ鍪菊n題)讓學生感受到在實際問題中做加法運算的數(shù)可能超出正數(shù)的范圍,體會學習有理數(shù)加法的必要性,激發(fā)學生探究新知的興趣。

  分析問題

  探究新知如果是球隊在某場比賽中上半場失了兩個球,下

  半場失了3個球,那么它的得勝球是幾個呢?算式應該

  怎么列?若這支球隊上半場進了2個球,下半場失了3個球,又如何列出算式,求它的得勝球呢?

 。▽W生思考回答)

  思考:請同學們想想,這支球隊在這場比賽中還可

  能出現(xiàn)其他的什么情況?你能列出算式嗎?與同伴交流。

  學生相互交流后,教師進一步引導學生可以把兩個有理數(shù)相加歸納為同號兩數(shù)相加、異號兩數(shù)相加、一個數(shù)同零相加這三種情況。

  2,借助數(shù)軸來討論有理數(shù)的加法。I

  一個物體向左右方向運動,我們規(guī)定向左運動為負,向右為正,向右運動5m,記作5m,向左運動5m,記作—5m。

 。1)(小組合作)把我們已經(jīng)得出的.幾種有理數(shù)相加的情況在數(shù)軸上用運動的方向表示出來,并求出結果,解釋它的意義。

  (2)交流匯報。(對學習小組的匯報結果,數(shù)軸用實物投影儀展示,算式由教師寫在黑板上)

 。3)說一說有理數(shù)相加應注意什么?(符號,絕對值)能用自己的語言歸納如何相加嗎?

 。4)在學生歸納的基礎上,教師出示有理數(shù)加法法則。

  有理數(shù)加法法則:

  1,同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  2,絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。

  3,一個數(shù)同。相加,仍得這個數(shù)。再次創(chuàng)設足球比賽情境,一方面與引題相呼應,聯(lián)系密切,另一方面讓學生在此情境中感受到有理數(shù)相加的幾種不同情形,并能將它分類,滲透分類討論思想。

  估計學生能順利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。

  但不能把它歸的為同號異號等三類,所以此處需教師。點拔、指扎,體現(xiàn)教師的引導者作用。

 、偌僭O原點0為第一次運動起點,第二次運動的起點是第一次運動的終點。②若學生在學習小組內(nèi)不能很好地參與探究,也可以讓其參照教科書第21頁的“探究”自主進行。③讓學生感受“數(shù)學模型”的思想。④學會與同伴交流,并在交流中獲益。培養(yǎng)學生的語言表達能力和歸納能力,也許學生說得不夠嚴謹,但這并不重要,重要的足能用自己的語言表達自己所發(fā)現(xiàn)的規(guī)律

  解決問題解決問題

  例1計算:

 。1)(—3)+(—9);(2)(—5)+13;

  (3)0十(—7);(4)(—4。7)+3。9。

  教師板演,讓學生說出每一步運算所依據(jù)的法則。

  請同學們比較,有理數(shù)的加法運算與小學時候?qū)W的加法有什么異同?(如:有理數(shù)加法計算中要注意符號,和不一定大于加數(shù)等等)

  例2足球循環(huán)賽中,紅隊4:1勝黃隊,黃隊1:0勝藍隊藍隊1:0勝紅隊,計算各隊的凈勝球數(shù)。

 。ㄗ寣W生讀數(shù),理解題意,思考解決方案,然后由學生口述,教師板書)

  學生活動:請學生說一說在生活中用到有理數(shù)加法的例子。注意點:(1)下先確定是哪種類型的加法再定符號,最后算絕對位。(2)教教師板演的例通要完整體現(xiàn)過程,并要求學生在剛開始學的時候要把中間的過

  程寫完整。(3)體現(xiàn)化歸思想。(4)這里增加了兩道題目,要是讓學生能較為熟練地運用法則進行計算。

  拓寬學生視野,讓學

  生體會到數(shù)學與生活的密切聯(lián)系。

  課堂練習教科書第23頁練習

  小結與作業(yè)

  課堂小結通過這節(jié)課的學習,你有哪些收獲,學生自己總結。

  本課作業(yè)必做題:閱讀教科書第20~22頁,教科書第31習題1。3第1、12、第13題。

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1,在本節(jié)課的設計中,注重引導學生參與探究、歸納(用自己的語言敘迷)有理數(shù)加法法則的過程。

  2,注意滲透數(shù)學思想方法。數(shù)學思想方法的滲透不可能立即見效,也不可能靠一朝一夕讓學生理解、掌握,所以,本節(jié)課在這一方面主要是讓學生感知研究數(shù)學問題的一般方法(分類、辯析、歸納、化歸等)。如在探究加法法則時,有意識地把各種情況先分為三類(同號、異號,一個數(shù)同0相加);在運用法則時,當和的符號確定以后,有理數(shù)的加法就轉(zhuǎn)化為算術的加減法。

  3,注意學生合作學習的學習方式,讓學生在與他人合作中受益,學會交流,學會傾聽

  別人的意見和建議。

  附板書:1。3。1有理數(shù)的加法(一)

有理數(shù)的加法教案2

  教學目標:

  1.知識與技能

  掌握加法法則,體會加法法則的意義。

  2.過程與方法

  通過經(jīng)歷有理數(shù)加法運算的發(fā)生過程,體驗數(shù)的運算探索過程,感悟有理數(shù)加法運算的技巧及運算規(guī)律。

  通過運算歸納出技巧,感悟絕對值不相等的異號兩數(shù)相加的技巧,突破本節(jié)內(nèi)容中的難點問題。

  3.情感、態(tài)度與價值觀:

  養(yǎng)成積極探索、不斷追求真知的品格。

  教學重點和難點:

  重點:有理數(shù)加法法則;

  難點:異號兩數(shù)相加的法則。

  教學安排:

  第1課時。

  教學過程:

  一、師生共同研究有理數(shù)加法法則

  我們已經(jīng)熟悉正數(shù)的'加法運算,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。

  例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。掌前言中,紅隊進4個球,失2個球;藍隊進1個球,失1個球。于是紅隊的凈勝球數(shù)為 4+(-2),黃隊的凈勝球數(shù)為1+(-1)。

  這里用到正數(shù)與負數(shù)的加法。學生考慮一下,怎么計算 4+(-2)?

  師:下面我們可以借助數(shù)軸來討論有理數(shù)的加法。

  一個物體作左右方向運動,我們規(guī)定向左為負,向右為正。

 、 兩次運動后物體從起點向右運動5m,再向右運動3m,那么兩次運動后總的結果是什么?

有理數(shù)的加法教案3

  1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運算法則;

  2.能根據(jù)有理數(shù)加法法則熟練地進行有理數(shù)加法運算,弄清有理數(shù)加法與非負數(shù)加法的區(qū)別;

  3.三個或三個以上有理數(shù)相加時,能正確應用加法交換律和結合律簡化運算過程;

  4.通過有理數(shù)加法法則及運算律在加法運算中的運用,培養(yǎng)學生的運算能力;

  5.本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數(shù)學知識來源于生活,并應用于生活。

  重點、難點分析

  重點:是依據(jù)有理數(shù)的加法法則熟練進行有理數(shù)的加法運算。

  難點:是有理數(shù)的加法法則的理解。

  (1)加法法則本身是一種規(guī)定,教材通過行程問題讓學生了解法則的合理性。

  (2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。

  (3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的`絕對值與較小的絕對值的差。一個數(shù)與0相加,仍得這個數(shù)。

  知識結構

  教法建議

  1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數(shù)、相反數(shù)、絕對值等知識。

  2.有理數(shù)的加法法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。

  3.應強調(diào)加法交換律a+b=b+a中字母a、b的任意性。

  4.計算三個或三個以上的加法算式,應建議學生養(yǎng)成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數(shù)間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。

  5.可以給出一些類似兩數(shù)之和必大于任何一個加數(shù)的判斷題,以明確由于負數(shù)參與加法運算,一些算術加法中的正確結論在有理數(shù)加法運算中未必也成立。

  6.在探討導出有理數(shù)的加法法則的行程問題時,可以嘗試發(fā)揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數(shù)運算法則。

有理數(shù)的加法教案4

  教學目標:

  1.知識與技能:使學生理解加減法統(tǒng)一成加法的意義,能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,2.過程與方法:經(jīng)歷加減法統(tǒng)一成加法的過程,體會加法的運算律在運算中的應用

  3.情感、態(tài)度與價值觀:滲透用轉(zhuǎn)化的'思想看問題以及解決問題,鼓勵學生依據(jù)法則簡化運算

  教學重點:

  能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,教學難點:

  準確、熟練地進行加減混合運算

  教學過程

  一、課前預習

  1、有理數(shù)的加法法則是什么? 2、有理數(shù)的減法法則是什么? 3、有理數(shù)的加法有什么運算律?具體內(nèi)容是什么? 4、計算下列各題(1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12二、自主探索

  根據(jù)有理數(shù)減法法則,有理數(shù)的加減混合運算可以統(tǒng)一為加法運算

  例1、計算(1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ )解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------統(tǒng)一為加法= 26+(-42)---------------------------------------運用運算律=-16 (2) (3)(4) (5)算式(-6)-(-13)+(-5)-(+3)+(+6)是有理數(shù)的加減混合運算,我們還可以按下列步驟進行計算:解:(-6)-(-13)+(-5)-(+3)+(+6)

  =(-6)+(+13)+(-5)+(-3)+(+6)------------統(tǒng)一加號=-6+13-5-3+6----------------------------------------省略加號=-6-5-3+13+6-----------------------------------------運用運算律=-14+19=5說明:省略加號的形式-6+13-5-3+6表示-6,+13,-5,-3,+6這五個數(shù)的和。

  例2.計算:

  (1) -3-5+4 (2)-26+43-24+13-46解:(1) (2)

  例4、若a=-2,b=3,c=-4,求值

  (1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

  解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [數(shù)據(jù)代入時,注意括號的運用] (2) (3)(4)

  例5、在伊拉克的戰(zhàn)爭中,謀生化小組沿東西方向路進行檢查,約定向東為正,某天從A地到B地結束時行走記錄為(單位:km) +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5問:(1)B地在A地何方,相距多少千米? (2)這小組這一天共走了多少千米

  三、學習小結

  這節(jié)課你學會了哪幾種運算?

  四、隨堂練習

  A類

  1、計算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3) (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48

  (5)21-12+33+12-67 (6)-3.2+5.8-8.6+12

  2計算

  (1) 1+2-3-4+5+6-7-8++97+98-99-100

  (2) 66-12+11.3-7.4+8.1-2.5

  (6)-2.7-[3-(-0.6+1.3)]

  B類

  3.計算(1) + + ++ (2) + + ++

有理數(shù)的加法教案5

  學習目標:

  1.理解有理數(shù)加法意義

  2.掌握有 理數(shù)加法法則,會正確進行有理數(shù)加法運算

  3.經(jīng)歷探究有理數(shù)有理數(shù)加法法則過程,學會與他人交流合作

  學習重點:和 的符號的確定

  學習難點:異號兩數(shù)相加的法則

  學法指導:

  在探討有理數(shù)的加法法則問題時,利用物體在同一直線上兩次運動的過程,理解有理數(shù)運算法則。先仔細觀察式子的特點,找到合理的運算步驟,使加法運算簡便。

  學習過程

  (一)課前學習導引:

  1. 如果向東走5米記作+5米,那么向西走3米記作

  2. 比較 大。2 -3,-5 - 7,4

  3. 已知a=-5,b=+ 3, 則︱a ︳+︱ b︱=

  (二)課堂學習導引

  正有理數(shù)及0的加法運算,小學已經(jīng)學過,然而實 際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它 們的'和叫做 凈勝球數(shù)。如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球.于是

  (1)紅隊的凈勝球數(shù)為 4+(-2) ,

  (2)藍隊的凈勝球數(shù)為 1+(-1) 。

  這里用到正數(shù)和負數(shù)的加法。那么,怎樣計算4+(-2),1+(-1)的結果呢?

  現(xiàn)在讓我們借助數(shù)軸來討論有理數(shù)的加法:某人從一點出 發(fā),經(jīng)過下面兩次運動,結果的方向怎樣?離開出發(fā)點的距離是多少?規(guī)定向東為正,向西為負,請同學們用數(shù)學式子表示

 、傧认驏|走了5米 ,再向東走3米 ,結果怎樣?可以 表示為

 、谙认蛭髯吡5米,再向西走了3米,結果如何?可以表示為:

  ③先向東走了5米,再向西走了3米,結果呢?可以表示為:

 、芟认蛭髯吡5米,再向東走了3米,結果呢?可以表示為:

 、菹认驏|走了5米,再向西走了5米,結果呢?可以表示為:

  ⑥先向西走5米,再向東走5米,結果呢?可以表示為:

  從以上幾個算式中總結有理數(shù)加法法則:

  (1)、同號的兩數(shù)相加,取 的符號,并把 相加.

  (2).絕對值不相等的異號兩數(shù)相加, 取 的加數(shù) 的 符號, 并用較大的絕對值 較小的絕對值. 互為相反數(shù)的 兩個數(shù)相加得 .

  (3)、一個數(shù)同0相加,仍得 。

  例1 計算(能完成嗎,先自己動動手吧!)

  (-3)+( -9) (2)(-4.7)+3.9

  例2 足球循環(huán)賽中,

  紅隊勝黃隊4: 1,黃隊勝藍隊1 :0,藍隊勝紅隊1: 0,計算 各隊的 凈勝球數(shù)。

  解:每個隊的進球總數(shù)記為正數(shù),失球總數(shù)記為負數(shù),這 兩數(shù)的和為這隊的凈勝球數(shù)。

  三場比賽中,

  紅隊共進4球,失2球,凈勝球數(shù)為(+4)+(2)=+(42 )= ;

  黃隊共進2球,失4球,凈勝球數(shù)為(+2)+(4)= (4

  藍隊共進( )球,失( )球, 凈勝球數(shù)為 = 。

  (三)課堂檢測導引:

  (1)(-3)+(-5)= ; (2)3+(-5)= ;

  (3)5+(-3)= ; (4)7+(-7)= ;

  (5)8+(-1)= ; (6)(-8)+1 = ;

  (7)(-6)+0 = ; (8)0+(-2) = ;

  (四)課堂學習小結

  1.本節(jié)課中你學到了什么知識?

  2.你覺得有理數(shù)加法比較難掌握的是哪里?

  (五)學后拓延導引

  1.計算:

  (1)(-13)+(-18); (2)20+(-14);

  (3)1.7 + 2.8 ; (4)2.3 + (-3.1);

  (5) (- )+(- ); (6)1 +(-1.5 );

  (7)(-3.04)+ 6 ; (8) +(- ).

  2.判斷題:

  (1)兩個負數(shù)的和一定是負數(shù); ( )

  (2)絕對值相等的兩個數(shù)的和等于零; ( )

  (3)若兩個有理數(shù)相加時的和為負數(shù),這兩個有理數(shù)一定都是負數(shù); ( )

  (4)若兩個有理數(shù)相加時的和為正數(shù),這兩個有理數(shù)一定都是正數(shù). ( )

  3.當a = -1.6,b = 2.4時,求a+b和a+(-b)的值.

有理數(shù)的加法教案6

  完成本節(jié)課《有理數(shù)加法》的課堂教學后,回首反思,金沙并存,現(xiàn)將我對本節(jié)課的反思情況概述如下:

  亮點有四:

  1、課題的引入。這一環(huán)節(jié),我采取提問的方式,由學生小學階段所學過的自然數(shù)的加法開始,提問學生:當初中階段引入負數(shù)以后,如果你是教材的編寫者,你會安排哪幾種形式的加法?這樣學生很快會想到“正+正、正+負、負+正、負+負、0+正、0+負”幾種形式,而后自然地提出:“同號相加、異號相加、0加任何數(shù)”這三種類型,進一步提升了學生的分類思想;

  2、嘗試探究的設置。這一環(huán)節(jié),我才用借助數(shù)軸導學案自主嘗試的形式,點在數(shù)軸上的移動學生已經(jīng)學過,設計問題時涉及到向左、向右移動問題學生自然會聯(lián)系到數(shù)軸,這樣根據(jù)題意列出式子,借助數(shù)軸很快的就能得出運算結果。既充分發(fā)揮了學生的主動性、提高了學生的參與度,同時又讓學生認識到數(shù)學知識的內(nèi)在聯(lián)系,知識遷移和劃歸借鑒也是學習數(shù)學的一種很好的方法。

  3、有理數(shù)加法法則的得出。這一環(huán)節(jié),我先將學生嘗試探究中的幾個式子以及結果全部羅列出來,讓學生觀察形式特征,猜想結果與形式之間的關系,大膽提出想法,然后舉例用數(shù)軸加以驗證,整個環(huán)節(jié)中,我只負責幫學生把想說的話板書出來,這極大地提升了學生數(shù)學學習興趣,又讓學生感受到了數(shù)學當中好多法則規(guī)律,都是經(jīng)過觀察、猜想、驗證、歸納而得出的,同時又提升了學生數(shù)學學習的自信心,也得到了學習數(shù)學的一個一般方法。

  四是,在對本節(jié)課的小結處理,小結由學生自己總結,在學生總結后加以強調(diào),為確保運算結果的`正確性,運算中應先確定符號,再計算結果。這樣就把圍繞初中學生的一個大難題“符號問題”加以弱化,已給學生指出了一個簡單檢驗的方法。

  金無足赤,課亦不可能絕對完美,換句話說根本就沒有完美的課。閃過亮點之后,需要改進的有四,如:

  1、考慮上課時限問題,沒有深入展開,致使有部分學生思維以及理解沒有跟上,從課后的練習反映出有幾個學生運算中還是存在問題。

  2、口算展示的時候,沒有進行象開火車的形式讓更多的學生都出來展示,而是讓幾個人代勞了。

  3、個人上課有些儀態(tài)上有些隨性,這樣會讓學生覺得不嚴謹,可能會滋生學生不良的行為習慣。

  4、板書上有些凌亂,缺乏合理規(guī)劃。

  記得有位導演在問到哪部作品拍得最好時,他說道:“下一部”。任何事物都是“玉”與“瑕”共存的,只有經(jīng)過了,再回首,才會發(fā)現(xiàn)“瑕“于何處,我們要做的不是掩“瑕”,而是要借“瑕”去“瑕”,避免同樣的“瑕”再次出現(xiàn),只有這樣,才能取得進步和提升。“藝海無涯,術無止境”只有不斷的總結反思才能有更大的提升!

有理數(shù)的加法教案7

  【目標預覽】

  知識技能:1、通過實例,了解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能運用法則進行計算;

  2、在有理數(shù)加法法則的教學過程中,培養(yǎng)觀察、比較、歸納及運算能力。 數(shù)學思考:1、正確地進行有理數(shù)的加法運算;

  2、用數(shù)形結合的思想方法得出有理數(shù)加法法則。

  解決問題:能運用有理數(shù)加法解決實際問題。

  情感態(tài)度:通過師生活動、學生自我探究,讓學生充分參與到數(shù)學學習的過程中來。

  【教學重點和難點】

  重點:了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進行有理數(shù)加法計算; 難點:異號兩數(shù)如何相加的法則。

  【情景設計】

  我們來看一個大家熟悉的實際問題:

  足球比賽中進球個數(shù)與失球個數(shù)是相反意義的量.若我們規(guī)定進球為“正”,失球為“負”。比如,進3個球記為正數(shù):+3,失2個球記為負數(shù):-2。它們的和為凈勝球數(shù):(+3)+(-2)學校足球隊在一場比賽中的勝負情況如下:

  (1)紅隊進了3個球,失了2個球,那么凈勝球數(shù)是:(+3)+(-2)

  (2)藍隊進了1個球,失了1個球,那么凈勝球數(shù)是:(+1)+(-1)

  這里,就需要用到正數(shù)與負數(shù)的加法。

  下面,我們利用數(shù)軸一起來討論有理數(shù)的加法規(guī)律。

  【探求新知】

  一個物體作左右運動,我們規(guī)定向左為負,向右為正。向右運動5m,可以記作多少?向左運動5m呢?

  (1)如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是多少呢? 利用數(shù)軸演示(如圖1),把原點假設為運動起點。

  兩次運動后物體從起點向右運動了8m。寫成算式是:5+3=8①

  利用數(shù)軸依次討論如下問題,引導學生自己尋找算式的答案:

 。2)如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少呢?

  (3)如果物體先向右運動5m,再向左運動3m,那么兩次運動后總的結果是多少呢?

  (4)如果物體先向左運動5m,再向右運動3m,那么兩次運動后總的結果是多少呢?

  (5)如果物體先向左運動5m,再向右運動5m,那么兩次運動后總的結果是多少呢?

 。6)如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少呢?

  (7)如果物體第一分鐘向右(或向左)運動5m,第二分鐘原地不動,那么兩次運動后總的結果是多少呢?

  總結:依次可得

 。2)(-5)+(-3)=-8②

  (3)5+(-3)=2③

 。4)3+(-5)=-2④

 。5)5+(-5)=0⑤

  (6)(-5)+5=0⑥

 。7)5+0=5或(-5)+0=-5⑦

  觀察上述7個算式,自己歸納出有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的.兩個數(shù)相加得0;

  3.一個數(shù)同0相加,仍得這個數(shù)。

  【范例精析】

  例1計算下列算式的結果,并說明理由:

  (1)(+4)+(+7);(2)(-4)+(-7);

  (3)(+4)+(-7);(4)(+9)+(-4);

  (5)(+4)+(-4);(6)(+9)+(-2);

  (7)(-9)+(+2);(8)(-9)+0;

  (9)0+(+2);(10)0+0.

  學生逐題口答后,教師小結:

  進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的具體情況,選用某一條加法法則.進行計算時,通常應該先確定“和”的符號,再計算“和”的絕對值.

  解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第2條計算)

  =-(3+9)(和取負號,把絕對值相加)

  =-12.

  例3 足球循環(huán)比賽中,紅隊勝黃隊4﹕1,黃隊勝藍隊1﹕0,藍隊勝紅隊1﹕0,計算各隊的凈勝球數(shù)。

  解:我們規(guī)定進球為“正”,失球為“負”。它們的和為凈勝球數(shù)。

  三場比賽中,紅隊共進4球,失2球,凈勝球數(shù)為(+4)+(-2)=2;

  黃隊共進2球,失4球,凈勝球數(shù)為(+2)+(-4)= -2;

  藍隊共進1球,失1球,凈勝球數(shù)為(+1)+(-1)=0;

  【一試身手】

  下面請同學們計算下列各題:

  (1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  全班學生書面練,四位學生板演,教師對學生板演進行講評.

  【總結陳詞】

  1、這節(jié)課我們從實例出發(fā),經(jīng)過比較、歸納,得出了有理數(shù)加法的法則.今后我們經(jīng)常要用類似的思想方法研究其他問題。

  2、應用有理數(shù)加法法則進行計算時,要同時注意確定“和”的符號,計算“和”的絕對值兩件事。

  【實戰(zhàn)操練】

  1.計算:

  (1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);

  (4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);

  (7)33+48;(8)(-56)+37.

  2.計算:

  (1)(-0.9)+(-2.7);(2)3.8+(-8.4);

  (3)(-0.5)+3;(4)3.29+1.78;

  (5)7+(-3.04);(6)(-2.9)+(-0.31);

  (7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.

  3.計算:

  4*.用“>”或“<”號填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

  5*.分別根據(jù)下列條件,利用|a|與|b|表示a與b的和:

  (1)a>0,b>0;(2) a<0,b<0;

  (3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.

有理數(shù)的加法教案8

  師:在小學里,同學們已經(jīng)學過數(shù)的加、減、乘、除四則運算。這些數(shù)是正整數(shù)、正分數(shù)、和零,也就是說,這些運算是在非負有理數(shù)范圍內(nèi)進行的。自從引進負數(shù)后,數(shù)的范圍就擴大到整個有理數(shù)。那么,在有理數(shù)范圍內(nèi),怎樣進行四則運算呢?今天,我們來探索有理數(shù)的加法運算。(教師板書課題:有理數(shù)的加法)

  請同學們思考一下,兩個有理數(shù)進行加法運算時,這兩個加數(shù)的符號可能有哪些情況。

  生1:加數(shù)都是正數(shù)或都是負數(shù)。(教師板書:同號兩數(shù)相加)加數(shù)一正一負(教師板書:異號兩數(shù)相加)

  師:還有其他情況嗎?

  生2:正數(shù)與零,負數(shù)與零,或者兩個都是零

  師:同學們回答得很好,F(xiàn)在讓我們一起來看一個具體問題:某人從一點出發(fā),經(jīng)過下面兩次運動,結果的方向怎樣?離開出發(fā)點的距離是多少?①先向東走了5米,再向東走3米,結果怎樣?

  生3:向東走了8米

  師:如果規(guī)定向東為正,向西為負,同學們能不能用一個數(shù)學式子來表示?生4:表示為(+5)+(+3)=+8(教師板書)師:我們可以畫出示意圖。(教師用投影儀顯示圖1)

 、谙认蛭髯吡耍得祝傧蛭髯吡耍趁,結果如何?

  生5:向西走了8米?梢员硎緸椋海ǎ担ǎ常剑竅教師板書]

 。ń處熡猛队皟x顯示圖2)

  ③向東走了5米,再向西走了3米,結果呢?

  生6:向東走了2米。可以表示為:(+5)+(-3)=+2[教師板

 。ń處熡猛队皟x顯示圖3)

 、芟认蛭髯吡耍得,再向東走了3米,結果呢?

  生7:向西走了2米?梢员硎緸椋海ǎ担ǎ常剑玻ń處煱澹ń處熡猛队皟x顯示圖4)

 、菹认驏|走5米,再向西走5米,結果呢?

  生8:回到原地位置。可以表示為:(+5)+(-5)=0(教師板書)(教師用投影儀顯示圖5)

 、尴认蛭髯撸得,再向東走5米,結果呢?

  生9:仍回到原地位置。可以表示為:(-5)+(+5)=0[教師板書]

 。ń處熡猛队皟x顯示圖6)

  師:同學們開動腦筋,完成上面這組問題完成得非常好,我非常高興,請同學們獨立完成下面一組有理數(shù)加法的具體問題,用數(shù)學式子表示出來。(教師用投影儀顯示下面內(nèi)容):

  從河岸現(xiàn)在水位線開始,規(guī)定上升為正,下降為負:

  ①上升8cm,再上升6cm,結果怎樣?②下降8cm,再下降6cm,結果怎樣?

  ③上升6cm,再下降8cm,結果怎樣?④下降6cm,再上升8cm,結果怎

 、萆仙竎m,再下降8cm,結果怎樣?⑥下降8cm,再上升0cm,結果怎樣?

  師:下面同學們分組討論,互相訂正。

  教師公布正確答案:

 、偕仙保碿m。 [教師板書(+8)+(+6)=+14]

 、谙陆担保碿m。 [教師板書(-8)+(-6)=-14]

 、巯陆担瞔m。 [教師板書(+6)+(-8)=-2]

 、苌仙瞔m。 [教師板書(-6)+(+8)=+2]

 、莼氐皆痪。 [教師板書(+8)+(-8)=0]

 、拊谠幌戮下8cm。 [教師板書(-8)+0=-8]

  師:通過以上兩組題目,從兩個有理數(shù)相加的過程中你發(fā)現(xiàn)了什么?請同學們發(fā)表演自己的觀點,與本組同學交流。

  小組1:我們這一小組同學發(fā)現(xiàn)了正數(shù)加正數(shù)結果是正數(shù),負數(shù)加負數(shù)結果是負數(shù),也就是說:同號兩數(shù)相加,符號不變。

  師:其他小組還有沒有新的發(fā)現(xiàn)什么?

  小組2:我們發(fā)現(xiàn)符號不同的兩個有理數(shù)相加,結果的符號與最前面加數(shù)的符號一樣。

  師:這一小組的看法是否正確呢?

  小組3:不正確。因為(+6)+(-8)=-2,(-6)+(+8)=+2,結果和符號與第一個加數(shù)的符號不一樣。應改為:符號不同的兩個有理數(shù)相加,結果的符號決定于加數(shù)中較大的數(shù)的符號。

  小組4:這句話也不對,如(+3)+(-5)=-2中,和的符號是負的,但+3比-5大,應改為:和的符號與絕對值大的加數(shù)符號一樣。師:還有沒有不同意見?

  小組5:我們這一小組有不同意見。符號不同的兩個數(shù)相加還有一種可能是相反數(shù)的情況,結果為0與每個的數(shù)的符號都不一樣。

  師:觀察仔細,很好。

  師:剛才同學們只是發(fā)現(xiàn)了兩個有理數(shù)相加,結果的符號問題,結果除了

  符號部分外,另一部分稱為結果的什么?

  眾生:結果的絕對值

  師:結果的絕對值與加數(shù)絕對值又有何關系呢?

  小組5:同號兩數(shù)相加和的絕對值等于加數(shù)絕對值的和,異號兩數(shù)相加和的絕對值等于較大絕對值減去較小絕對值。

  師:請同學歸納,總結出有理數(shù)的加法規(guī)律。

  小組6:同號兩數(shù)相加,符號不變,并把絕對值相加;異號兩數(shù)相加取絕對值較大加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  小組7:不對,異號兩數(shù)相加應分兩種情況。⑴絕對值不等的異號兩數(shù)相加;⑵絕對值相等的異號兩數(shù)相加。

  師:很好!同學們已經(jīng)感受到兩個有理數(shù)相加的情況與小學加法要復雜一些,是否還有沒有考慮到的情況呢?

  小組8:有,一個數(shù)同0相加,仍是這個數(shù)。

  師:全班同學共同說出有理數(shù)的加法法則。

  教(板書):有理數(shù)加法法則:

 、偻杻蓴(shù)相加,取加數(shù)的'符號,并把絕對值相加;

  ②異號兩數(shù)相加,如果絕對值相等和為0;如果絕對值不等,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;

 、垡粋數(shù)同0相加,仍是這個數(shù)。

 。c評:學生學習知識是一個動態(tài)的過程。學生認知的效果,完全取決于學生是否以積極的心態(tài)參與認知活動。因此本節(jié)課在教學設計上有如下閃光點:

  1、通過回顧已具備的部分知識與技能,讓學生產(chǎn)生一個暫時成功感和滿足感,達到一個暫時的心理平衡。

  2、以提問的形式展現(xiàn)新矛盾、新問題,挑起學生引起心理的不平衡。旨在誘發(fā)學生好強、好勝的天性,將學生的注意力導向下一個環(huán)節(jié)。

  3、再次以提問的形式,滲透分類的思想,將學生的思維導向分類探索的境地。旨在讓學生的思維能圓潤地過度到探索新知情境之中。

  4、分類展示生活情境,放手讓全體學生感受并探索,從而構建加法法則。)

有理數(shù)的加法教案9

  教學目標

  知識與技能:

  掌握有理數(shù)加法法則,并能運用法則進行有理數(shù)加法的運算。

  過程與方法:

  1.經(jīng)歷有理數(shù)加法法則的探究過程,深刻感受分類討論、數(shù)形結合的思想,由具體到抽象、由特殊到一般的認知規(guī)律;

  2.動手、發(fā)現(xiàn)、分類、比較等方法的學習,培養(yǎng)歸納能力。

  情感態(tài)度與價值觀:

  1.通過師生合作交流,學生主動參與探索獲得數(shù)學知識,從而提高學習數(shù)學的積極性;

  2.體會數(shù)學來源于生活,服務于生活,培養(yǎng)熱愛數(shù)學的情感,體會數(shù)學的'應用價值;

  3.培養(yǎng)善于觀察、勤于思考的學習習慣,樹立合作意識,體驗成功,提高學習自信心。

  教學重點

  有理數(shù)加法法則及運用

  教學難點

  異號兩數(shù)相加法則

  教具準備

  powerpoint課件

  課時安排

  1課時

  教學過程環(huán)節(jié)教師活動學生活動設計意圖創(chuàng)設情境引入新課XX年6月11日至7月11日,第19屆世界杯足球賽在南非舉行。來自世界各國的32支球隊為全世界的球迷送上了一場完美的足球盛宴。

  小組循環(huán)賽中,勝一場得3分,平一場得1分,負一場得0分,積分最多的兩支隊伍進入十六強。積分相同時,凈勝球多者為勝。

  以B組為例,進入十六強的是阿根廷和韓國。

  國家賽勝平負得分阿根廷韓國希臘尼日利亞再以A組為例,A組積分榜,國家賽勝平負得分進球失球凈勝球烏拉圭+40墨西哥+3-2南非+3-5法國+1-4師:從A組積分榜可以看出墨西哥和南非的積分相同,那么究竟應該確定哪個隊進入十六強呢?此時則需要計算各隊的凈勝球數(shù)。你能列出計算各隊凈勝球數(shù)的算式嗎?

  學生看圖表,思考問題。

  學生列出計算凈勝球數(shù)的算式。利用世界杯的例子,體現(xiàn)數(shù)學來源于生活,讓學生體會學習有理數(shù)加法的必要性,更能激發(fā)學生的興趣,體會學習有理數(shù)運算的必要性。環(huán)節(jié)教師活動學生活動設計意圖探索新知

  師:凈勝球數(shù)的計算實際上涉及到有理數(shù)的加法。今天我們就來研究有理數(shù)的加法運算。

有理數(shù)的加法教案10

  授課教師:xx(連云港市灌云縣伊山中學)

  教材:蘇科版七年級上冊

  一、學情及學習內(nèi)容分析

  “有理數(shù)的加法與減法”是基于規(guī)則為主的新授課型

  有理數(shù)的加法與減法是在引入“負數(shù)”的基礎上,將數(shù)的范圍擴展到“有理數(shù)”范圍內(nèi)的加、減法運算。本節(jié)課從學生的生活經(jīng)歷和經(jīng)驗出發(fā),創(chuàng)設情境,通過分析生活情境中的事理和觀察溫度計刻度的操作,得到了一些有理數(shù)減法的算式,用“化歸”的思想方法歸納出有理數(shù)減法法則,并應用所學的有理數(shù)減法解決實際問題,整節(jié)課的設計流程和總體思路可以用下圖表示:生活情境,動手操作——————有理數(shù)減法算式———————有理數(shù)減法法則———————有理數(shù)減法的應用

  二、教學目標及教學重(難)點

  教學目標:

  1、知識與技能:會根據(jù)減法的法則進行有理數(shù)減法的運算。

  2、過程與方法:經(jīng)歷分析生活情境中的數(shù)學事例,提煉其中的數(shù)學算式,并從中歸納有理數(shù)減

  法法則;經(jīng)歷將法則應用于解題的這一由一般到特殊的過程。

  3、情感態(tài)度與價值觀:在由實際情境提煉數(shù)學算式的過程中,感受數(shù)學在我們的生活中;在這

  一過程中,滲透轉(zhuǎn)化的思想方法,感受數(shù)學思想方法的導航作用。

  教學重點:有理數(shù)減法法則與運用

  教學難點:從實際情境到數(shù)學算式,從數(shù)學算式到法則的提煉,在法則的總結中體現(xiàn)化歸

  的思想方法的滲透。

  教學方法:觀察探究、合作交流。

  三、教學過程設計:

  在課前讓學生玩有理數(shù)加法中的撲克牌游戲。

  1、情境引入:

  師:同學們,大家都看過天氣預報,有沒有注意到里面有“溫差”之說呢?

  有效性分析:通過設計“溫差”這一問題情境,進而順利的進入課題,并從列算式角度加以認識,得到一些有理數(shù)減法算式,為后面的化歸思想方法歸納出有理數(shù)減法法則做好素材和算式上的準備。

  2、建構活動

  活動1:計算溫差

  師:有理數(shù)加減3

  生1:利用溫度計的刻度直觀得到算式5 + 3 = 8

  生2:利用日溫差的定義可得到算式:5-(-3)= 8

  師:比較兩式,我們有什么發(fā)現(xiàn)嗎?

  生:“-”變“+”,(-3)變3、

  活動2:通過舉例子驗證剛才的變化過程,加深對有理數(shù)減法算式的`理解。

  有理數(shù)加減3

  有效性分析:從生活情境中,學生獲取了豐富的素材和有理數(shù)減法運算的算式,為下面觀察算式特點,總結運算方法做好準備。這種由算式到法則的過程,使學生從心理上更易接受,令算式更有實際背景和說服力,為有理數(shù)減法運算法則的提煉和數(shù)學化打下了良好的基礎。

  3、數(shù)學化認識

  5-(-3)=5 + 3(-3)-(-5)=(-3)+ 5

  3-(-5)=3 +5(-3)-5=(-3)+(-5)

  師:綜合上面算式的共同特點即被減數(shù)不變,減號變加號,減數(shù)變成它的相反數(shù),我們就得到了有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。有理數(shù)減法概念_百度知道

  有效性分析:“化歸”的思想和方法是初中數(shù)學中最重要的方法之一,本節(jié)課的數(shù)學化過程正是通過觀察已有的算式來發(fā)現(xiàn)和總結“有理數(shù)的減法法則”的,在教學中滲透了“化歸”思想。此外,在化歸為加法運算時,進一步復習加法法則,強化了有理數(shù)的減法與小學學的減法之間的聯(lián)系和區(qū)別:即小學的減法是有理數(shù)減法中的一種特例,即減數(shù)比被減數(shù)小,;當減數(shù)比被減數(shù)大時,小學無法解決的問題現(xiàn)在可以解決了。

  4、基礎性訓練

  例1計算下列各題

 、0-(-22)

 、8.5-(-1.5)

 、郏+4)-16

 、埽12)14

 、15-(-7)

  ⑥(+2)-(+8)

  基礎練習:

  1、課本p 32

  2、求出數(shù)軸上兩點之間的距離:

  (1)表示數(shù)10的點與表示數(shù)4的點;

 。2)表示數(shù)2的點與表示數(shù)-4的點;

 。3)表示數(shù)-1的點與表示數(shù)-6的點。

  有效性分析:基礎性訓練中安排了典型例題,著重訓練學生利用剛學過的“有理數(shù)的減法法則”進行計算的正確性和熟練度,并規(guī)范了計算題目的格式,在格式中進一步熟悉法則,正確運用法則,讓學生明確有理數(shù)的減法的一般步驟是:

 。1)變符號;

  (2)用加法法則進行計算

  3、拓展延伸

  [原創(chuàng)]巧用撲克牌進行有理數(shù)簡單運算練習初中數(shù)學論壇—中學數(shù)學教育論壇—人教論壇— powered by discuz!

  有效性分析:通過撲克牌的兩個活動,進一步調(diào)動學生學習有理數(shù)減法運算法則的積極性和主動性,寓教于樂,在活動中通過小組帶動班上所有學生學習的熱情,同時在活動中更加明確運算法則,做到熟練而準確地運用法則,感受并思考:“兩個有理數(shù)相減,差一定比兩個減數(shù)小嗎?”的問題,以區(qū)別于學生在小學中熟知的減法運算,更好的完成本節(jié)課的教學目標。

  四、教學反思

  “有理數(shù)的加法與減法”的教學,可以有多種不同的設計方案,但大體上可以分為兩類:一類是由老師較快的給出法則,用較多的時間組織學生練習,以求熟練的掌握法則;另一類是適當?shù)募訌姺▌t的形成過程,從而在此過程中著力培養(yǎng)學生的觀察、比較、歸納能力,相應的適當壓縮法則的練習,如本教學設計。本節(jié)課注重學生自我學習的能力,學生在學習了有理數(shù)加法后,再學習有理數(shù)的減法,教師把學習的主動權歸還學生,不再是教師講,學生聽,現(xiàn)在變?yōu)閷W生講,教師聽,由學生自己發(fā)現(xiàn)問題,分析問題,解決問題。學生與教師分享彼此的思考,經(jīng)驗和知識,交流彼此的情感,體驗與感悟,豐富教學內(nèi)容,求的新的發(fā)展,從而達到共識,共享,共進。

有理數(shù)的加法教案11

  教學目標:

  1、知識與技能:理解有理數(shù)加法的運算律,能熟練地運用運算律簡化有理數(shù)加法的運算,能靈活運用有理數(shù)的加法解決簡單實際問題。

  2、過程與方法:經(jīng)過有理數(shù)加法運算律的探索過程,了解加法的運算律,能用運算律簡化運算。

  重點、難點:

  1、重點:運算律的理解及合理、靈活的運用。

  2、難點:合理運用運算律。

  教學過程:

  一、創(chuàng)設情景,導入新課

  1、敘述有理數(shù)的加法法則。

  2、有理數(shù)加法與小學里學過的數(shù)的加法有什么區(qū)別和聯(lián)系?

  答:進行有理數(shù)加法運算,先要根據(jù)具體情況正確地選用法則,確定和的符號,這與小學里學過的數(shù)的加法是不同的;而計算和的絕對值,用的是小學里學過的.加法或減法運算。

  二、合作交流,解讀探究

  1、計算下列各題,并說明是根據(jù)哪一條運算法則?

 。1)(—9.18)+6.18;

(2)6.18+(—9.18);

(3)(—2.37)+(—4.63)

  2、計算下列各題:

 。1)+(—4);

(2)8+;

  (3)+(—11);

(4)(—7)+;

 。5)+(+27);

(6)(—22)+。

  通過上面練習,引導學生得出:

  交換律兩個有理數(shù)相加,交換加數(shù)的位置,和不變。

  用代數(shù)式表示上面一段話:

  a+b=b+a

  運算律式子中的字母a,b表示任意的一個有理數(shù),可以是正數(shù),也可以是負數(shù)或者零。在同一個式子中,同一個字母表示同一個數(shù)。

  結合律三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

  用代數(shù)式表示上面一段話:

 。╝+b)+c=a+(b+c)

  這里a,b,c表示任意三個有理數(shù)。

  根據(jù)加法交換律和結合律可以推出:三個以上的有理數(shù)相加,可以任意交換加數(shù)的位置,也可以先把其中的幾個數(shù)相加。

  三、應用遷移,鞏固提高

  例(P22例3)計算:

 。1)33+(—2)+7+(—8)

 。2)4.375+(—82)+(—4.375)

  引導學生發(fā)現(xiàn),在本例中,把正數(shù)與負數(shù)分別結合在一起再相加,有相反數(shù)的先把相反數(shù)相加;能湊整的先湊整;有分母相同的,先把同分母的數(shù)相加,計算就比較簡便。

  本例先由學生在筆記本上解答,然后教師根據(jù)學生解答情況指定幾名學生板演,并引導學生發(fā)現(xiàn),簡化加法運算一般是三種方法:首先消去互為相反數(shù)的兩數(shù)(其和為0),同號結合或湊整數(shù)。

  例2(P23例4)

  教師通過啟發(fā),由學生列出算式,再讓學生思考,如何應用運算律,使計算簡便。第一問可以讓學生自已作行程示意圖幫助理解,注意第一問和第二問的區(qū)別。

  練習課本P23練習:1、2

  四、總結反思

  本節(jié)課你有哪些收獲?

  五、作業(yè)

  1、課本P27習題1.4A組第3、4題

  2、課本P28習題1.4B組第12題

有理數(shù)的加法教案12

  教學目標

  1.了解有理數(shù)加法的意義,理解有理數(shù)加法法則的合理性;

  2.能運用有理數(shù)加法法則,正確進行有理數(shù)加法運算;

  3.經(jīng)歷探索有理數(shù)加法法則的過程,感受數(shù)學學習的方法;

  4.通過積極參與探究性的數(shù)學活動,體驗數(shù)學來源于實踐并為實踐服務的思想,激發(fā)學生的學習興趣,同時培養(yǎng)學生探究性學習的能力.

  教學重點

  能運用有理數(shù)加法法則,正確進行有理數(shù)加法運算.

  教學難點

  經(jīng)歷探索有理數(shù)加法法則的過程,感受數(shù)學學習的方法.

  教學過程(教師)

  一、創(chuàng)設情境

  小學里,我們學過加法和減法運算,引進負數(shù)后,怎樣進行有理數(shù)的加法和減法運算呢?

  1.試一試

  甲、乙兩隊進行足球比賽.如果甲隊在主場贏了3球,在客場輸了2球,那么兩場比賽后甲隊凈勝1球.

  你能把上面比賽的過程及結果用有理數(shù)的算式表示出來嗎?

  做一做:比賽中勝負難料,兩場比賽的結果還可能有哪些情況呢?動動手填表:

  2.我們知道,求兩次輸贏的總結果,可以用加法來解答,請同學們先個人研究,后小組交流.

  你還能舉出一些應用有理數(shù)加法的實際例子嗎?

  二、探究歸納

  1.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向左移動5個單位長度,再向右移動3個單位長度,這時筆尖停在“”的位置上.

  用數(shù)軸和算式可以將以上過程及結果分別表示為:

  算式:________________________

  2.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向右移動3個單位長度,再向左移動2個單位長度,這時筆尖停在“1”的位置上.

  用數(shù)軸和算式可以將以上過程及結果分別表示為:

  算式:________________________

  3.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向左移動3個單位長度,再向左移動2個單位長度,這時筆尖的位置表示什么數(shù)?

  請用數(shù)軸和算式分別表示以上過程及結果:

  算式:________________________

  仿照上面的做法,請在數(shù)軸上呈現(xiàn)下面的.算式所表示的筆尖運動的過程和結果.

  4.觀察、思考、討論、交流并得出有理數(shù)加法法則.

  討論:兩個有理數(shù)相加時,和的符號及絕對值怎樣確定?你能找到有理數(shù)相加的一般方法嗎?

  《2.5有理數(shù)的加法與減法》課時練習

  1.七年級(3)班同學李亮在一次班級運動會上參加三級跳遠比賽,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最遠?成績是多少?

  2.一只小蟲從某點P出發(fā),在一條直線上來回爬行,假定把向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),則爬行各段路程(單位:厘米)依次為:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

  (1)通過計算說明小蟲是否回到起點P.

  (2)如果小蟲爬行的速度為0.5厘米/秒,那么小蟲共爬行了多長時間.

  2.5有理數(shù)的加法與減法:同步練習

  1.高速公路養(yǎng)護小組,乘車沿東西向公路巡視維護,如果約定向東為正,向西為負,當天的行駛記錄如下(單位:km)

  +17,-9,+7,-15,-3,+11,-6,-8,+5,+16

  (1)養(yǎng)護小組最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?

  (2)養(yǎng)護過程中,最遠外離出發(fā)點有多遠?

  (3)若汽車耗油量為0.09升/km,則這次養(yǎng)護共耗油多少升?

有理數(shù)的加法教案13

  教學目標:

  知識與技能:

  1.進一步熟練掌握有理數(shù)加法的法則。

  2.掌握有理數(shù)加法的運算律,并能運用加法運算律簡化運算。

  過程與方法:

  啟發(fā)引導式教學,能夠由特殊到一般、由一般到特殊,體會研究數(shù)學的一些基本方法。

  情感、態(tài)度與價值觀:

  1.培養(yǎng)學生的分類與歸納能力。

  2.強化學生的數(shù)形結合思想。

  3.提高學生的自學以及理解能力,激發(fā)學生學習數(shù)學的興趣。

  教學重點:

加法運算律的靈活運用,解決實際問題。

  教學難點:

能運用加法運算律簡化運算,加法在實際中的應用。

  教學方法:

采取啟發(fā)式教學法及情感教學,引導學生主動思考,主動探索。用大量的實例讓學生得出規(guī)律。

  教學準備:

  1.復習有理數(shù)的加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  (2)異號兩數(shù)相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  (3)一個數(shù)同0相加,仍得這個數(shù)。

  2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8

  教學過程:

  (一)情境引入,提出問題:

  鼓勵學生通過自己的探索,交流、歸納,自主得出有理數(shù)加法的運算律。

  1.敘述有理數(shù)的加法法則.

  2.小學學過的加法的運算律是不是也可以擴充到有理數(shù)范圍?

  3.計算下列各組數(shù)的值,并觀察尋找規(guī)律。

  (1) (-7)+(-5) (-5)+(-7)

  (2) [8+(-5)]+(-4) 8+[(-5)+(-4)]

  (3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]

  結論:在有理數(shù)運算中,加法交換律、結合律仍然成立。

  (二)活動探究,猜想結論:

  交換律——兩個有理數(shù)相加,交換加數(shù)的位置,和不變.

  用代數(shù)式表示:a+b=b+a

  運算律式子中的字母a、b表示任意的.一個有理數(shù),可以是正數(shù),也可以是負數(shù)或者零.

  在同一個式子中,同一個字母表示同一個數(shù).

  結合律——三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變.

  用代數(shù)式表示:(a+b)+c=a+(b+c)

  這里a、b、c表示任意三個有理數(shù).

  (三)驗證結論:

  例1計算16+(-25)+24+(-32)

  (引導學生發(fā)現(xiàn),在本例中,把正數(shù)與負數(shù)分別結合在一起再相加,計算就比較簡便)

  解:16+(-25)+24+(-32)

  =[16+24]+[(-25)+(-32)] (加法結合律)

  =40+(-57) (同號相加法則)

  =-17 (異號相加法則)

  例2計算:31+(-28)+28+69

  (引導學生發(fā)現(xiàn),在本例中,把互為相反數(shù)的兩個數(shù)相加得0,計算比較簡便)

  解:31+(-28)+28+69

  =31+69+[(-28)+28]

  =100+0

  =100

  《2.4.1有理數(shù)的加法法則》同步練習

  3.若兩個有理數(shù)的和為負數(shù),那么這兩個有理數(shù)(  )

  A.一定都是負數(shù)B.一正一負,且負數(shù)的絕對值大

  C.一個為零,另一個為負數(shù)D.至少有一個是負數(shù)

  4.兩個有理數(shù)的和(  )

  A.一定大于其中的一個加數(shù)

  B.一定小于其中的一個加數(shù)

  C.和的大小由兩個加數(shù)的符號而定

  D.和的大小由兩個加數(shù)的符號與絕對值而定

  5.如果a,b是有理數(shù),那么下列各式中成立的是(  )

  A.如果a<0,b<0,那么a+b>0

  B.如果a>0,b<0,那么a+b>0

  C.如果a>0,b<0,那么a+b<0

  D.如果a>0,b<0,且|a|>|b|,那么a+b>0

  《2.4.2有理數(shù)的加法運算律》測試

  7.張大伯共有7塊麥田,今年的收成與去年相比(增產(chǎn)為正,減產(chǎn)為負)情況如下(單位:kg):+320,-170,-320,+130,+150,+40,-150.則今年小麥的總產(chǎn)量與去年相比(  )

  A.增產(chǎn)20 kg B.減產(chǎn)20 kg C.增長120 kg D.持平

  8.一口井水面比井口低3米,一只蝸牛從水面沿著井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,卻又下滑了0.15米;第三次往上爬了0.7米,卻又下滑了0.15米;第四次往上爬了0.75米,卻又下滑了0.2米;第五次往上爬了0.55米,沒有下滑;第六次往上爬了0.48米,此時蝸牛有沒有爬出井口?請通過列式計算加以說明

有理數(shù)的加法教案14

  教學目的:

  經(jīng)歷探索有理數(shù)加法法則,理解有理數(shù)加法的意義。初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)加法運算。

  教學重點:

  有理數(shù)的加法法則

  教學難點:

  異號兩數(shù)相加的法則

  教學教程:

  一、復習提問:

  1、如果向東走5米記作+5米,那么向

  西走3米記作__.

  2、已知a=-5,b=+3,

  ︱a︳+︱b︱=_

  已知a=-5,b=+3,

  ︱a︱-︱b︱=__

  -1012345678

  二、授新課

  小明在一條東西向的跑道上,先走了5米,又走了3米,能否確定他現(xiàn)在位于原來位置的哪個方向?與原來相距多少米?規(guī)定向東的方向為正方向

  提問:這題有幾種情況?

  小結:有以下四種情況

 。1)兩次都向東走,

 。2)兩次都向西走

 。3)先向東走,再向西走

 。4)先向西走,再向東走

  根據(jù)小結,我們再分析每一種情況:

  (1)向東走5米,再向東走3米,一共向東走了多少米?

  +5+3(+5)+(+3)=+8

  (2)向西走-5米,再向西走-3米,一共向東走了多少米?

  -5-3(-3)+(-5)=-8

 。ǎ常┫认驏|走5米,再向西走3米,兩次一共向東走了多少米?

 。常担ǎ担ǎ常剑

  (4)先向西走5米,再向東走3米,兩次一共向東走了多少米?

  -5+3(-5)+(+3)=-2

  下面再看兩種特殊情況:

 。ǎ担┫驏|走5米,再向西走5米,兩次一共向東走了多少米

 。担担ǎ担ǎ担剑

 。ǎ叮┫蛭髯撸得,再向東走0米,兩次一共向東走了多少米?

  -5(-5)+0=-5

  小結:總結前的六種情況:

  同號兩數(shù)相加:(+5)+(+3)=+8

 。ǎ担ǎ常剑

  異號兩數(shù)相加:(+5)+(-3)=2

 。ǎ担ǎ常剑

 。ǎ担ǎ担剑

  一數(shù)與零相加:(-5)+0=-5

  得出結論:有理數(shù)加法法則

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加

  2、絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得零

  3、一個數(shù)與零相加,仍得這個數(shù)

  例如:

 。ǎ4)+(-5)(同號兩數(shù)相加)

  解:=-()(取相同的符號)

  =-9(并把絕對值相加)

 。ǎ玻ǎ叮ń^對值不等的'異號兩數(shù)相加)

  解:=+()(取絕對值較大的符號)

 。剑矗ㄓ幂^大的絕對值減去較小的絕對值)

  練習:

  口答:

  1、(-15)+(-32)=

  2、(+10)+(-4)=

 。、7+(-4)=

 。、4+(-4)=

 。、9+(-2)=

 。丁ⅲǎ0.5)+4.4=

 。、(-9)+0=

  8、0+(-3)=

  計算:

  (1)(-3)+(-9)(2)(-1/2)+(+1/3)

  解略

  練習:

 。1)15+(-22)=

  (2)(-13)+(-8)=

 。3)(-0·9)+1·5=

  (4)2·7+(-3·5)=

 。5)1/2+(-2/3)=

  (6)(-1/4)+(-1/3)=

  練習三:

  1、填空:

 。1)+11=27(2)7+=4

 。3)(-9)+=9(4)12+=0

 。5)(-8)+=-15(6)+(-13)=-6

  2、用“<”或“>”號填空:

  (1)如果a>0,b>0,那么a+b0;

  (2)如果a<0,b<0,那么a+b0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b0

  小結:

  1、掌握有理數(shù)的加法法則,正確地進

  行加法運算。

  2、兩個有理數(shù)相加,首先判斷加法類

  型,再確定和的符號,最后確定和的絕對值。

  作業(yè):課本第38頁2、3

  第40頁1、2

有理數(shù)的加法教案15

  教學目標:

  1通過學生身邊可以嘗試、探索的場景,經(jīng)歷有理數(shù)加法法則得出的過程,理解有理數(shù)加法法則的合理性。2能進行簡單的有理數(shù)加法運算。3發(fā)展觀察、歸納、猜測驗證等能力。

  重點難點:

  重點:有理數(shù)加法法則的得出,和的符號的確定;難點:異號兩數(shù)相加

  教學過程

  一激情引趣,導入新課

  1我們早知道正有理數(shù)和零可以做加法運算,所有的有理數(shù)是否都可以進行加法運算呢?這就是我們這節(jié)課要研究的問題,先來分析一下,所有的有理數(shù)相加的時候有哪些情況呢?請你想一想

  2從前有一個文盲記錄家里的收入和支出的時候是這樣的,用一顆紅豆代表收入一文錢,用一顆黑豆代表支出一文錢,有一個月他發(fā)現(xiàn)記賬的盒子里有10顆紅豆6顆黑豆,他發(fā)現(xiàn)紅豆比黑豆多了4顆,于是他不僅知道了這個月結余了4文錢還知道了自己這個月的收入和支出情況。我們可以用一個圖形來表示他這種記賬方式!啊稹,“●”分別表紅豆和黑豆。

  ,這個圖形其實就是一個有理數(shù)的加法算式:(+10)+(-6)=+4下面我們借助數(shù)軸來理解有理數(shù)的加法運算。

  二合作交流,探究新知

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向,一個單位代表1千米

  1同號兩數(shù)相加

  小亮從O點出發(fā),先向西移動2個千米休息一會兒,再向西移動3個千米,兩次走路的總效果等于從點O出發(fā)向_____走了_______千米,用式子表示為_______________.

  從上,你發(fā)現(xiàn)了嗎,同號兩數(shù)相加結果的符號怎么確定?結果的絕對值怎么確定?請把你的發(fā)現(xiàn)填在下面的框里。

  同號兩數(shù)相加,取__________的`符號,并把它們的_____________相加。

  2異號兩數(shù)相加

  (1)小明先從點O出發(fā),先向東走4千米,發(fā)現(xiàn)口袋里的鑰匙丟了,急急忙忙掉頭向西走了1千米,找到了掉在路邊的鑰匙,小明這兩次走路的效果總等于從點O出發(fā)向___走了____千米,用式子表示為_________________________.

  (2)小李先從點O出發(fā),先向東走了1米,突然想起今天家里有事,趕緊掉頭向西往家里走,走了3千米到達家中,小李兩次走路的總效果等于等于吃哦從點O出發(fā),向___走了

  _____千米。用式子表達為_______________________.

  從上面例子,你發(fā)現(xiàn)了異號兩數(shù)怎么做嗎?把你的結論填在下框中。

  異號兩數(shù)相加,絕對值不相等時,取__________________的符號,并用_________的絕對值

  減去_______________的絕對值。

  3一個數(shù)和零相加,以及互為相反數(shù)相加

  (1)某個人第一批貨獲得利潤3萬元,第二批貨物保本,這兩批貨物總的利潤是多少萬元?

  (2)某人第一批貨物的利潤是5萬元,第二批貨物虧損5萬元,這兩批貨物總的利潤是多少?

  從上問題,你發(fā)現(xiàn)了什么?把你的結論寫在下框中,

  互為相反數(shù)的兩個相加得_______,一個數(shù)和零相加,任得____________________.

  三應用遷移,拓展提高

  例1計算(1)(-8)+(-12)(2)(-3.75)+(-0.25)

  (3)(-5)+9(4)(–10)+7

  例2計算(1)(-3)+(2)(-)+(-)

  例3填空

  (1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=

  四課堂練習,鞏固提高

  P21

  五反思小結鞏固提高

  有理數(shù)的加法法則有哪些?請你把它們寫在下面:

  1

  2

  3

  4

  六作業(yè)p24-25A組1-4B1

【有理數(shù)的加法教案】相關文章:

《有理數(shù)的加法》教案02-25

有理數(shù)的加法與減法教案01-28

有理數(shù)的加法教案15篇02-23

有理數(shù)加法教學反思11-11

七年級數(shù)學教案有理數(shù)的加法12-29

加法的教案04-12

《5的加法》教案01-30

大班加法的教案03-07

67的加法教案12-06

《加法的估算》教案09-15