有理數(shù)的加法教案
作為一名辛苦耕耘的教育工作者,常常要寫一份優(yōu)秀的教案,借助教案可以更好地組織教學活動。那么應當如何寫教案呢?下面是小編為大家收集的有理數(shù)的加法教案,希望能夠幫助到大家。
有理數(shù)的加法教案1
教學目標
1,在現(xiàn)實背景中理解有理數(shù)加法的意義。
2,經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則。
3,能積極地參與探究有理數(shù)加法法則的活動,并學會與他人交流合作。
4,能較為熟練地進行有理數(shù)的加法運算,并能解決簡單的實際間題。
5,在教學中適當滲透分類討論思想
教學難點
異號兩數(shù)相加
知識重點
和的符號的確定
教學過程
。◣熒顒樱┰O計理念
設置情境
引入課題回顧用正負數(shù)表示數(shù)量的實際例子;
在足球比賽中,如果把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。若紅隊進4個球,失2個球,則紅隊的勝球數(shù),可以怎樣表示?藍隊的勝球數(shù)呢?
師:如何進行類似的有理數(shù)的加法運算呢?這就是我們這節(jié)課一起與大家探討的問題。
。ǔ鍪菊n題)讓學生感受到在實際問題中做加法運算的數(shù)可能超出正數(shù)的范圍,體會學習有理數(shù)加法的必要性,激發(fā)學生探究新知的興趣。
分析問題
探究新知如果是球隊在某場比賽中上半場失了兩個球,下
半場失了3個球,那么它的得勝球是幾個呢?算式應該
怎么列?若這支球隊上半場進了2個球,下半場失了3個球,又如何列出算式,求它的得勝球呢?
。▽W生思考回答)
思考:請同學們想想,這支球隊在這場比賽中還可
能出現(xiàn)其他的什么情況?你能列出算式嗎?與同伴交流。
學生相互交流后,教師進一步引導學生可以把兩個有理數(shù)相加歸納為同號兩數(shù)相加、異號兩數(shù)相加、一個數(shù)同零相加這三種情況。
2,借助數(shù)軸來討論有理數(shù)的加法。I
一個物體向左右方向運動,我們規(guī)定向左運動為負,向右為正,向右運動5m,記作5m,向左運動5m,記作—5m。
。1)(小組合作)把我們已經(jīng)得出的.幾種有理數(shù)相加的情況在數(shù)軸上用運動的方向表示出來,并求出結果,解釋它的意義。
(2)交流匯報。(對學習小組的匯報結果,數(shù)軸用實物投影儀展示,算式由教師寫在黑板上)
。3)說一說有理數(shù)相加應注意什么?(符號,絕對值)能用自己的語言歸納如何相加嗎?
。4)在學生歸納的基礎上,教師出示有理數(shù)加法法則。
有理數(shù)加法法則:
1,同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2,絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。
3,一個數(shù)同。相加,仍得這個數(shù)。再次創(chuàng)設足球比賽情境,一方面與引題相呼應,聯(lián)系密切,另一方面讓學生在此情境中感受到有理數(shù)相加的幾種不同情形,并能將它分類,滲透分類討論思想。
估計學生能順利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。
但不能把它歸的為同號異號等三類,所以此處需教師。點拔、指扎,體現(xiàn)教師的引導者作用。
、偌僭O原點0為第一次運動起點,第二次運動的起點是第一次運動的終點。②若學生在學習小組內(nèi)不能很好地參與探究,也可以讓其參照教科書第21頁的“探究”自主進行。③讓學生感受“數(shù)學模型”的思想。④學會與同伴交流,并在交流中獲益。培養(yǎng)學生的語言表達能力和歸納能力,也許學生說得不夠嚴謹,但這并不重要,重要的足能用自己的語言表達自己所發(fā)現(xiàn)的規(guī)律
解決問題解決問題
例1計算:
。1)(—3)+(—9);(2)(—5)+13;
(3)0十(—7);(4)(—4。7)+3。9。
教師板演,讓學生說出每一步運算所依據(jù)的法則。
請同學們比較,有理數(shù)的加法運算與小學時候?qū)W的加法有什么異同?(如:有理數(shù)加法計算中要注意符號,和不一定大于加數(shù)等等)
例2足球循環(huán)賽中,紅隊4:1勝黃隊,黃隊1:0勝藍隊藍隊1:0勝紅隊,計算各隊的凈勝球數(shù)。
。ㄗ寣W生讀數(shù),理解題意,思考解決方案,然后由學生口述,教師板書)
學生活動:請學生說一說在生活中用到有理數(shù)加法的例子。注意點:(1)下先確定是哪種類型的加法再定符號,最后算絕對位。(2)教教師板演的例通要完整體現(xiàn)過程,并要求學生在剛開始學的時候要把中間的過
程寫完整。(3)體現(xiàn)化歸思想。(4)這里增加了兩道題目,要是讓學生能較為熟練地運用法則進行計算。
拓寬學生視野,讓學
生體會到數(shù)學與生活的密切聯(lián)系。
課堂練習教科書第23頁練習
小結與作業(yè)
課堂小結通過這節(jié)課的學習,你有哪些收獲,學生自己總結。
本課作業(yè)必做題:閱讀教科書第20~22頁,教科書第31習題1。3第1、12、第13題。
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,在本節(jié)課的設計中,注重引導學生參與探究、歸納(用自己的語言敘迷)有理數(shù)加法法則的過程。
2,注意滲透數(shù)學思想方法。數(shù)學思想方法的滲透不可能立即見效,也不可能靠一朝一夕讓學生理解、掌握,所以,本節(jié)課在這一方面主要是讓學生感知研究數(shù)學問題的一般方法(分類、辯析、歸納、化歸等)。如在探究加法法則時,有意識地把各種情況先分為三類(同號、異號,一個數(shù)同0相加);在運用法則時,當和的符號確定以后,有理數(shù)的加法就轉(zhuǎn)化為算術的加減法。
3,注意學生合作學習的學習方式,讓學生在與他人合作中受益,學會交流,學會傾聽
別人的意見和建議。
附板書:1。3。1有理數(shù)的加法(一)
有理數(shù)的加法教案2
教學目標:
1.知識與技能
掌握加法法則,體會加法法則的意義。
2.過程與方法
通過經(jīng)歷有理數(shù)加法運算的發(fā)生過程,體驗數(shù)的運算探索過程,感悟有理數(shù)加法運算的技巧及運算規(guī)律。
通過運算歸納出技巧,感悟絕對值不相等的異號兩數(shù)相加的技巧,突破本節(jié)內(nèi)容中的難點問題。
3.情感、態(tài)度與價值觀:
養(yǎng)成積極探索、不斷追求真知的品格。
教學重點和難點:
重點:有理數(shù)加法法則;
難點:異號兩數(shù)相加的法則。
教學安排:
第1課時。
教學過程:
一、師生共同研究有理數(shù)加法法則
我們已經(jīng)熟悉正數(shù)的'加法運算,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。
例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。掌前言中,紅隊進4個球,失2個球;藍隊進1個球,失1個球。于是紅隊的凈勝球數(shù)為 4+(-2),黃隊的凈勝球數(shù)為1+(-1)。
這里用到正數(shù)與負數(shù)的加法。學生考慮一下,怎么計算 4+(-2)?
師:下面我們可以借助數(shù)軸來討論有理數(shù)的加法。
一個物體作左右方向運動,我們規(guī)定向左為負,向右為正。
、 兩次運動后物體從起點向右運動5m,再向右運動3m,那么兩次運動后總的結果是什么?
有理數(shù)的加法教案3
1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運算法則;
2.能根據(jù)有理數(shù)加法法則熟練地進行有理數(shù)加法運算,弄清有理數(shù)加法與非負數(shù)加法的區(qū)別;
3.三個或三個以上有理數(shù)相加時,能正確應用加法交換律和結合律簡化運算過程;
4.通過有理數(shù)加法法則及運算律在加法運算中的運用,培養(yǎng)學生的運算能力;
5.本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數(shù)學知識來源于生活,并應用于生活。
重點、難點分析
重點:是依據(jù)有理數(shù)的加法法則熟練進行有理數(shù)的加法運算。
難點:是有理數(shù)的加法法則的理解。
(1)加法法則本身是一種規(guī)定,教材通過行程問題讓學生了解法則的合理性。
(2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的`絕對值與較小的絕對值的差。一個數(shù)與0相加,仍得這個數(shù)。
知識結構
教法建議
1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數(shù)、相反數(shù)、絕對值等知識。
2.有理數(shù)的加法法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
3.應強調(diào)加法交換律a+b=b+a中字母a、b的任意性。
4.計算三個或三個以上的加法算式,應建議學生養(yǎng)成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數(shù)間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。
5.可以給出一些類似兩數(shù)之和必大于任何一個加數(shù)的判斷題,以明確由于負數(shù)參與加法運算,一些算術加法中的正確結論在有理數(shù)加法運算中未必也成立。
6.在探討導出有理數(shù)的加法法則的行程問題時,可以嘗試發(fā)揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數(shù)運算法則。
有理數(shù)的加法教案4
教學目標:
1.知識與技能:使學生理解加減法統(tǒng)一成加法的意義,能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,2.過程與方法:經(jīng)歷加減法統(tǒng)一成加法的過程,體會加法的運算律在運算中的應用
3.情感、態(tài)度與價值觀:滲透用轉(zhuǎn)化的'思想看問題以及解決問題,鼓勵學生依據(jù)法則簡化運算
教學重點:
能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,教學難點:
準確、熟練地進行加減混合運算
教學過程
一、課前預習
1、有理數(shù)的加法法則是什么? 2、有理數(shù)的減法法則是什么? 3、有理數(shù)的加法有什么運算律?具體內(nèi)容是什么? 4、計算下列各題(1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12二、自主探索
根據(jù)有理數(shù)減法法則,有理數(shù)的加減混合運算可以統(tǒng)一為加法運算
例1、計算(1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ )解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------統(tǒng)一為加法= 26+(-42)---------------------------------------運用運算律=-16 (2) (3)(4) (5)算式(-6)-(-13)+(-5)-(+3)+(+6)是有理數(shù)的加減混合運算,我們還可以按下列步驟進行計算:解:(-6)-(-13)+(-5)-(+3)+(+6)
=(-6)+(+13)+(-5)+(-3)+(+6)------------統(tǒng)一加號=-6+13-5-3+6----------------------------------------省略加號=-6-5-3+13+6-----------------------------------------運用運算律=-14+19=5說明:省略加號的形式-6+13-5-3+6表示-6,+13,-5,-3,+6這五個數(shù)的和。
例2.計算:
(1) -3-5+4 (2)-26+43-24+13-46解:(1) (2)
例4、若a=-2,b=3,c=-4,求值
(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c
解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [數(shù)據(jù)代入時,注意括號的運用] (2) (3)(4)
例5、在伊拉克的戰(zhàn)爭中,謀生化小組沿東西方向路進行檢查,約定向東為正,某天從A地到B地結束時行走記錄為(單位:km) +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5問:(1)B地在A地何方,相距多少千米? (2)這小組這一天共走了多少千米
三、學習小結
這節(jié)課你學會了哪幾種運算?
四、隨堂練習
A類
1、計算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3) (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48
(5)21-12+33+12-67 (6)-3.2+5.8-8.6+12
2計算
(1) 1+2-3-4+5+6-7-8++97+98-99-100
(2) 66-12+11.3-7.4+8.1-2.5
(6)-2.7-[3-(-0.6+1.3)]
B類
3.計算(1) + + ++ (2) + + ++
有理數(shù)的加法教案5
學習目標:
1.理解有理數(shù)加法意義
2.掌握有 理數(shù)加法法則,會正確進行有理數(shù)加法運算
3.經(jīng)歷探究有理數(shù)有理數(shù)加法法則過程,學會與他人交流合作
學習重點:和 的符號的確定
學習難點:異號兩數(shù)相加的法則
學法指導:
在探討有理數(shù)的加法法則問題時,利用物體在同一直線上兩次運動的過程,理解有理數(shù)運算法則。先仔細觀察式子的特點,找到合理的運算步驟,使加法運算簡便。
學習過程
(一)課前學習導引:
1. 如果向東走5米記作+5米,那么向西走3米記作
2. 比較 大。2 -3,-5 - 7,4
3. 已知a=-5,b=+ 3, 則︱a ︳+︱ b︱=
(二)課堂學習導引
正有理數(shù)及0的加法運算,小學已經(jīng)學過,然而實 際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它 們的'和叫做 凈勝球數(shù)。如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球.于是
(1)紅隊的凈勝球數(shù)為 4+(-2) ,
(2)藍隊的凈勝球數(shù)為 1+(-1) 。
這里用到正數(shù)和負數(shù)的加法。那么,怎樣計算4+(-2),1+(-1)的結果呢?
現(xiàn)在讓我們借助數(shù)軸來討論有理數(shù)的加法:某人從一點出 發(fā),經(jīng)過下面兩次運動,結果的方向怎樣?離開出發(fā)點的距離是多少?規(guī)定向東為正,向西為負,請同學們用數(shù)學式子表示
、傧认驏|走了5米 ,再向東走3米 ,結果怎樣?可以 表示為
、谙认蛭髯吡5米,再向西走了3米,結果如何?可以表示為:
③先向東走了5米,再向西走了3米,結果呢?可以表示為:
、芟认蛭髯吡5米,再向東走了3米,結果呢?可以表示為:
、菹认驏|走了5米,再向西走了5米,結果呢?可以表示為:
⑥先向西走5米,再向東走5米,結果呢?可以表示為:
從以上幾個算式中總結有理數(shù)加法法則:
(1)、同號的兩數(shù)相加,取 的符號,并把 相加.
(2).絕對值不相等的異號兩數(shù)相加, 取 的加數(shù) 的 符號, 并用較大的絕對值 較小的絕對值. 互為相反數(shù)的 兩個數(shù)相加得 .
(3)、一個數(shù)同0相加,仍得 。
例1 計算(能完成嗎,先自己動動手吧!)
(-3)+( -9) (2)(-4.7)+3.9
例2 足球循環(huán)賽中,
紅隊勝黃隊4: 1,黃隊勝藍隊1 :0,藍隊勝紅隊1: 0,計算 各隊的 凈勝球數(shù)。
解:每個隊的進球總數(shù)記為正數(shù),失球總數(shù)記為負數(shù),這 兩數(shù)的和為這隊的凈勝球數(shù)。
三場比賽中,
紅隊共進4球,失2球,凈勝球數(shù)為(+4)+(2)=+(42 )= ;
黃隊共進2球,失4球,凈勝球數(shù)為(+2)+(4)= (4
藍隊共進( )球,失( )球, 凈勝球數(shù)為 = 。
(三)課堂檢測導引:
(1)(-3)+(-5)= ; (2)3+(-5)= ;
(3)5+(-3)= ; (4)7+(-7)= ;
(5)8+(-1)= ; (6)(-8)+1 = ;
(7)(-6)+0 = ; (8)0+(-2) = ;
(四)課堂學習小結
1.本節(jié)課中你學到了什么知識?
2.你覺得有理數(shù)加法比較難掌握的是哪里?
(五)學后拓延導引
1.計算:
(1)(-13)+(-18); (2)20+(-14);
(3)1.7 + 2.8 ; (4)2.3 + (-3.1);
(5) (- )+(- ); (6)1 +(-1.5 );
(7)(-3.04)+ 6 ; (8) +(- ).
2.判斷題:
(1)兩個負數(shù)的和一定是負數(shù); ( )
(2)絕對值相等的兩個數(shù)的和等于零; ( )
(3)若兩個有理數(shù)相加時的和為負數(shù),這兩個有理數(shù)一定都是負數(shù); ( )
(4)若兩個有理數(shù)相加時的和為正數(shù),這兩個有理數(shù)一定都是正數(shù). ( )
3.當a = -1.6,b = 2.4時,求a+b和a+(-b)的值.
有理數(shù)的加法教案6
完成本節(jié)課《有理數(shù)加法》的課堂教學后,回首反思,金沙并存,現(xiàn)將我對本節(jié)課的反思情況概述如下:
亮點有四:
1、課題的引入。這一環(huán)節(jié),我采取提問的方式,由學生小學階段所學過的自然數(shù)的加法開始,提問學生:當初中階段引入負數(shù)以后,如果你是教材的編寫者,你會安排哪幾種形式的加法?這樣學生很快會想到“正+正、正+負、負+正、負+負、0+正、0+負”幾種形式,而后自然地提出:“同號相加、異號相加、0加任何數(shù)”這三種類型,進一步提升了學生的分類思想;
2、嘗試探究的設置。這一環(huán)節(jié),我才用借助數(shù)軸導學案自主嘗試的形式,點在數(shù)軸上的移動學生已經(jīng)學過,設計問題時涉及到向左、向右移動問題學生自然會聯(lián)系到數(shù)軸,這樣根據(jù)題意列出式子,借助數(shù)軸很快的就能得出運算結果。既充分發(fā)揮了學生的主動性、提高了學生的參與度,同時又讓學生認識到數(shù)學知識的內(nèi)在聯(lián)系,知識遷移和劃歸借鑒也是學習數(shù)學的一種很好的方法。
3、有理數(shù)加法法則的得出。這一環(huán)節(jié),我先將學生嘗試探究中的幾個式子以及結果全部羅列出來,讓學生觀察形式特征,猜想結果與形式之間的關系,大膽提出想法,然后舉例用數(shù)軸加以驗證,整個環(huán)節(jié)中,我只負責幫學生把想說的話板書出來,這極大地提升了學生數(shù)學學習興趣,又讓學生感受到了數(shù)學當中好多法則規(guī)律,都是經(jīng)過觀察、猜想、驗證、歸納而得出的,同時又提升了學生數(shù)學學習的自信心,也得到了學習數(shù)學的一個一般方法。
四是,在對本節(jié)課的小結處理,小結由學生自己總結,在學生總結后加以強調(diào),為確保運算結果的`正確性,運算中應先確定符號,再計算結果。這樣就把圍繞初中學生的一個大難題“符號問題”加以弱化,已給學生指出了一個簡單檢驗的方法。
金無足赤,課亦不可能絕對完美,換句話說根本就沒有完美的課。閃過亮點之后,需要改進的有四,如:
1、考慮上課時限問題,沒有深入展開,致使有部分學生思維以及理解沒有跟上,從課后的練習反映出有幾個學生運算中還是存在問題。
2、口算展示的時候,沒有進行象開火車的形式讓更多的學生都出來展示,而是讓幾個人代勞了。
3、個人上課有些儀態(tài)上有些隨性,這樣會讓學生覺得不嚴謹,可能會滋生學生不良的行為習慣。
4、板書上有些凌亂,缺乏合理規(guī)劃。
記得有位導演在問到哪部作品拍得最好時,他說道:“下一部”。任何事物都是“玉”與“瑕”共存的,只有經(jīng)過了,再回首,才會發(fā)現(xiàn)“瑕“于何處,我們要做的不是掩“瑕”,而是要借“瑕”去“瑕”,避免同樣的“瑕”再次出現(xiàn),只有這樣,才能取得進步和提升。“藝海無涯,術無止境”只有不斷的總結反思才能有更大的提升!
有理數(shù)的加法教案7
【目標預覽】
知識技能:1、通過實例,了解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能運用法則進行計算;
2、在有理數(shù)加法法則的教學過程中,培養(yǎng)觀察、比較、歸納及運算能力。 數(shù)學思考:1、正確地進行有理數(shù)的加法運算;
2、用數(shù)形結合的思想方法得出有理數(shù)加法法則。
解決問題:能運用有理數(shù)加法解決實際問題。
情感態(tài)度:通過師生活動、學生自我探究,讓學生充分參與到數(shù)學學習的過程中來。
【教學重點和難點】
重點:了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進行有理數(shù)加法計算; 難點:異號兩數(shù)如何相加的法則。
【情景設計】
我們來看一個大家熟悉的實際問題:
足球比賽中進球個數(shù)與失球個數(shù)是相反意義的量.若我們規(guī)定進球為“正”,失球為“負”。比如,進3個球記為正數(shù):+3,失2個球記為負數(shù):-2。它們的和為凈勝球數(shù):(+3)+(-2)學校足球隊在一場比賽中的勝負情況如下:
(1)紅隊進了3個球,失了2個球,那么凈勝球數(shù)是:(+3)+(-2)
(2)藍隊進了1個球,失了1個球,那么凈勝球數(shù)是:(+1)+(-1)
這里,就需要用到正數(shù)與負數(shù)的加法。
下面,我們利用數(shù)軸一起來討論有理數(shù)的加法規(guī)律。
【探求新知】
一個物體作左右運動,我們規(guī)定向左為負,向右為正。向右運動5m,可以記作多少?向左運動5m呢?
(1)如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是多少呢? 利用數(shù)軸演示(如圖1),把原點假設為運動起點。
兩次運動后物體從起點向右運動了8m。寫成算式是:5+3=8①
利用數(shù)軸依次討論如下問題,引導學生自己尋找算式的答案:
。2)如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少呢?
(3)如果物體先向右運動5m,再向左運動3m,那么兩次運動后總的結果是多少呢?
(4)如果物體先向左運動5m,再向右運動3m,那么兩次運動后總的結果是多少呢?
(5)如果物體先向左運動5m,再向右運動5m,那么兩次運動后總的結果是多少呢?
。6)如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少呢?
(7)如果物體第一分鐘向右(或向左)運動5m,第二分鐘原地不動,那么兩次運動后總的結果是多少呢?
總結:依次可得
。2)(-5)+(-3)=-8②
(3)5+(-3)=2③
。4)3+(-5)=-2④
。5)5+(-5)=0⑤
(6)(-5)+5=0⑥
。7)5+0=5或(-5)+0=-5⑦
觀察上述7個算式,自己歸納出有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的.兩個數(shù)相加得0;
3.一個數(shù)同0相加,仍得這個數(shù)。
【范例精析】
例1計算下列算式的結果,并說明理由:
(1)(+4)+(+7);(2)(-4)+(-7);
(3)(+4)+(-7);(4)(+9)+(-4);
(5)(+4)+(-4);(6)(+9)+(-2);
(7)(-9)+(+2);(8)(-9)+0;
(9)0+(+2);(10)0+0.
學生逐題口答后,教師小結:
進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的具體情況,選用某一條加法法則.進行計算時,通常應該先確定“和”的符號,再計算“和”的絕對值.
解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第2條計算)
=-(3+9)(和取負號,把絕對值相加)
=-12.
例3 足球循環(huán)比賽中,紅隊勝黃隊4﹕1,黃隊勝藍隊1﹕0,藍隊勝紅隊1﹕0,計算各隊的凈勝球數(shù)。
解:我們規(guī)定進球為“正”,失球為“負”。它們的和為凈勝球數(shù)。
三場比賽中,紅隊共進4球,失2球,凈勝球數(shù)為(+4)+(-2)=2;
黃隊共進2球,失4球,凈勝球數(shù)為(+2)+(-4)= -2;
藍隊共進1球,失1球,凈勝球數(shù)為(+1)+(-1)=0;
【一試身手】
下面請同學們計算下列各題:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
全班學生書面練,四位學生板演,教師對學生板演進行講評.
【總結陳詞】
1、這節(jié)課我們從實例出發(fā),經(jīng)過比較、歸納,得出了有理數(shù)加法的法則.今后我們經(jīng)常要用類似的思想方法研究其他問題。
2、應用有理數(shù)加法法則進行計算時,要同時注意確定“和”的符號,計算“和”的絕對值兩件事。
【實戰(zhàn)操練】
1.計算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);
(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
2.計算:
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);
(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.
3.計算:
4*.用“>”或“<”號填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
5*.分別根據(jù)下列條件,利用|a|與|b|表示a與b的和:
(1)a>0,b>0;(2) a<0,b<0;
(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.
有理數(shù)的加法教案8
師:在小學里,同學們已經(jīng)學過數(shù)的加、減、乘、除四則運算。這些數(shù)是正整數(shù)、正分數(shù)、和零,也就是說,這些運算是在非負有理數(shù)范圍內(nèi)進行的。自從引進負數(shù)后,數(shù)的范圍就擴大到整個有理數(shù)。那么,在有理數(shù)范圍內(nèi),怎樣進行四則運算呢?今天,我們來探索有理數(shù)的加法運算。(教師板書課題:有理數(shù)的加法)
請同學們思考一下,兩個有理數(shù)進行加法運算時,這兩個加數(shù)的符號可能有哪些情況。
生1:加數(shù)都是正數(shù)或都是負數(shù)。(教師板書:同號兩數(shù)相加)加數(shù)一正一負(教師板書:異號兩數(shù)相加)
師:還有其他情況嗎?
生2:正數(shù)與零,負數(shù)與零,或者兩個都是零
師:同學們回答得很好,F(xiàn)在讓我們一起來看一個具體問題:某人從一點出發(fā),經(jīng)過下面兩次運動,結果的方向怎樣?離開出發(fā)點的距離是多少?①先向東走了5米,再向東走3米,結果怎樣?
生3:向東走了8米
師:如果規(guī)定向東為正,向西為負,同學們能不能用一個數(shù)學式子來表示?生4:表示為(+5)+(+3)=+8(教師板書)師:我們可以畫出示意圖。(教師用投影儀顯示圖1)
、谙认蛭髯吡耍得祝傧蛭髯吡耍趁,結果如何?
生5:向西走了8米?梢员硎緸椋海ǎ担ǎ常剑竅教師板書]
。ń處熡猛队皟x顯示圖2)
③向東走了5米,再向西走了3米,結果呢?
生6:向東走了2米。可以表示為:(+5)+(-3)=+2[教師板
。ń處熡猛队皟x顯示圖3)
、芟认蛭髯吡耍得,再向東走了3米,結果呢?
生7:向西走了2米?梢员硎緸椋海ǎ担ǎ常剑玻ń處煱澹ń處熡猛队皟x顯示圖4)
、菹认驏|走5米,再向西走5米,結果呢?
生8:回到原地位置。可以表示為:(+5)+(-5)=0(教師板書)(教師用投影儀顯示圖5)
、尴认蛭髯撸得,再向東走5米,結果呢?
生9:仍回到原地位置。可以表示為:(-5)+(+5)=0[教師板書]
。ń處熡猛队皟x顯示圖6)
師:同學們開動腦筋,完成上面這組問題完成得非常好,我非常高興,請同學們獨立完成下面一組有理數(shù)加法的具體問題,用數(shù)學式子表示出來。(教師用投影儀顯示下面內(nèi)容):
從河岸現(xiàn)在水位線開始,規(guī)定上升為正,下降為負:
①上升8cm,再上升6cm,結果怎樣?②下降8cm,再下降6cm,結果怎樣?
③上升6cm,再下降8cm,結果怎樣?④下降6cm,再上升8cm,結果怎
、萆仙竎m,再下降8cm,結果怎樣?⑥下降8cm,再上升0cm,結果怎樣?
師:下面同學們分組討論,互相訂正。
教師公布正確答案:
、偕仙保碿m。 [教師板書(+8)+(+6)=+14]
、谙陆担保碿m。 [教師板書(-8)+(-6)=-14]
、巯陆担瞔m。 [教師板書(+6)+(-8)=-2]
、苌仙瞔m。 [教師板書(-6)+(+8)=+2]
、莼氐皆痪。 [教師板書(+8)+(-8)=0]
、拊谠幌戮下8cm。 [教師板書(-8)+0=-8]
師:通過以上兩組題目,從兩個有理數(shù)相加的過程中你發(fā)現(xiàn)了什么?請同學們發(fā)表演自己的觀點,與本組同學交流。
小組1:我們這一小組同學發(fā)現(xiàn)了正數(shù)加正數(shù)結果是正數(shù),負數(shù)加負數(shù)結果是負數(shù),也就是說:同號兩數(shù)相加,符號不變。
師:其他小組還有沒有新的發(fā)現(xiàn)什么?
小組2:我們發(fā)現(xiàn)符號不同的兩個有理數(shù)相加,結果的符號與最前面加數(shù)的符號一樣。
師:這一小組的看法是否正確呢?
小組3:不正確。因為(+6)+(-8)=-2,(-6)+(+8)=+2,結果和符號與第一個加數(shù)的符號不一樣。應改為:符號不同的兩個有理數(shù)相加,結果的符號決定于加數(shù)中較大的數(shù)的符號。
小組4:這句話也不對,如(+3)+(-5)=-2中,和的符號是負的,但+3比-5大,應改為:和的符號與絕對值大的加數(shù)符號一樣。師:還有沒有不同意見?
小組5:我們這一小組有不同意見。符號不同的兩個數(shù)相加還有一種可能是相反數(shù)的情況,結果為0與每個的數(shù)的符號都不一樣。
師:觀察仔細,很好。
師:剛才同學們只是發(fā)現(xiàn)了兩個有理數(shù)相加,結果的符號問題,結果除了
符號部分外,另一部分稱為結果的什么?
眾生:結果的絕對值
師:結果的絕對值與加數(shù)絕對值又有何關系呢?
小組5:同號兩數(shù)相加和的絕對值等于加數(shù)絕對值的和,異號兩數(shù)相加和的絕對值等于較大絕對值減去較小絕對值。
師:請同學歸納,總結出有理數(shù)的加法規(guī)律。
小組6:同號兩數(shù)相加,符號不變,并把絕對值相加;異號兩數(shù)相加取絕對值較大加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
小組7:不對,異號兩數(shù)相加應分兩種情況。⑴絕對值不等的異號兩數(shù)相加;⑵絕對值相等的異號兩數(shù)相加。
師:很好!同學們已經(jīng)感受到兩個有理數(shù)相加的情況與小學加法要復雜一些,是否還有沒有考慮到的情況呢?
小組8:有,一個數(shù)同0相加,仍是這個數(shù)。
師:全班同學共同說出有理數(shù)的加法法則。
教(板書):有理數(shù)加法法則:
、偻杻蓴(shù)相加,取加數(shù)的'符號,并把絕對值相加;
②異號兩數(shù)相加,如果絕對值相等和為0;如果絕對值不等,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;
、垡粋數(shù)同0相加,仍是這個數(shù)。
。c評:學生學習知識是一個動態(tài)的過程。學生認知的效果,完全取決于學生是否以積極的心態(tài)參與認知活動。因此本節(jié)課在教學設計上有如下閃光點:
1、通過回顧已具備的部分知識與技能,讓學生產(chǎn)生一個暫時成功感和滿足感,達到一個暫時的心理平衡。
2、以提問的形式展現(xiàn)新矛盾、新問題,挑起學生引起心理的不平衡。旨在誘發(fā)學生好強、好勝的天性,將學生的注意力導向下一個環(huán)節(jié)。
3、再次以提問的形式,滲透分類的思想,將學生的思維導向分類探索的境地。旨在讓學生的思維能圓潤地過度到探索新知情境之中。
4、分類展示生活情境,放手讓全體學生感受并探索,從而構建加法法則。)
有理數(shù)的加法教案9
教學目標
知識與技能:
掌握有理數(shù)加法法則,并能運用法則進行有理數(shù)加法的運算。
過程與方法:
1.經(jīng)歷有理數(shù)加法法則的探究過程,深刻感受分類討論、數(shù)形結合的思想,由具體到抽象、由特殊到一般的認知規(guī)律;
2.動手、發(fā)現(xiàn)、分類、比較等方法的學習,培養(yǎng)歸納能力。
情感態(tài)度與價值觀:
1.通過師生合作交流,學生主動參與探索獲得數(shù)學知識,從而提高學習數(shù)學的積極性;
2.體會數(shù)學來源于生活,服務于生活,培養(yǎng)熱愛數(shù)學的情感,體會數(shù)學的'應用價值;
3.培養(yǎng)善于觀察、勤于思考的學習習慣,樹立合作意識,體驗成功,提高學習自信心。
教學重點
有理數(shù)加法法則及運用
教學難點
異號兩數(shù)相加法則
教具準備
powerpoint課件
課時安排
1課時
教學過程環(huán)節(jié)教師活動學生活動設計意圖創(chuàng)設情境引入新課XX年6月11日至7月11日,第19屆世界杯足球賽在南非舉行。來自世界各國的32支球隊為全世界的球迷送上了一場完美的足球盛宴。
小組循環(huán)賽中,勝一場得3分,平一場得1分,負一場得0分,積分最多的兩支隊伍進入十六強。積分相同時,凈勝球多者為勝。
以B組為例,進入十六強的是阿根廷和韓國。
國家賽勝平負得分阿根廷韓國希臘尼日利亞再以A組為例,A組積分榜,國家賽勝平負得分進球失球凈勝球烏拉圭+40墨西哥+3-2南非+3-5法國+1-4師:從A組積分榜可以看出墨西哥和南非的積分相同,那么究竟應該確定哪個隊進入十六強呢?此時則需要計算各隊的凈勝球數(shù)。你能列出計算各隊凈勝球數(shù)的算式嗎?
學生看圖表,思考問題。
學生列出計算凈勝球數(shù)的算式。利用世界杯的例子,體現(xiàn)數(shù)學來源于生活,讓學生體會學習有理數(shù)加法的必要性,更能激發(fā)學生的興趣,體會學習有理數(shù)運算的必要性。環(huán)節(jié)教師活動學生活動設計意圖探索新知
師:凈勝球數(shù)的計算實際上涉及到有理數(shù)的加法。今天我們就來研究有理數(shù)的加法運算。
有理數(shù)的加法教案10
授課教師:xx(連云港市灌云縣伊山中學)
教材:蘇科版七年級上冊
一、學情及學習內(nèi)容分析
“有理數(shù)的加法與減法”是基于規(guī)則為主的新授課型
有理數(shù)的加法與減法是在引入“負數(shù)”的基礎上,將數(shù)的范圍擴展到“有理數(shù)”范圍內(nèi)的加、減法運算。本節(jié)課從學生的生活經(jīng)歷和經(jīng)驗出發(fā),創(chuàng)設情境,通過分析生活情境中的事理和觀察溫度計刻度的操作,得到了一些有理數(shù)減法的算式,用“化歸”的思想方法歸納出有理數(shù)減法法則,并應用所學的有理數(shù)減法解決實際問題,整節(jié)課的設計流程和總體思路可以用下圖表示:生活情境,動手操作——————有理數(shù)減法算式———————有理數(shù)減法法則———————有理數(shù)減法的應用
二、教學目標及教學重(難)點
教學目標:
1、知識與技能:會根據(jù)減法的法則進行有理數(shù)減法的運算。
2、過程與方法:經(jīng)歷分析生活情境中的數(shù)學事例,提煉其中的數(shù)學算式,并從中歸納有理數(shù)減
法法則;經(jīng)歷將法則應用于解題的這一由一般到特殊的過程。
3、情感態(tài)度與價值觀:在由實際情境提煉數(shù)學算式的過程中,感受數(shù)學在我們的生活中;在這
一過程中,滲透轉(zhuǎn)化的思想方法,感受數(shù)學思想方法的導航作用。
教學重點:有理數(shù)減法法則與運用
教學難點:從實際情境到數(shù)學算式,從數(shù)學算式到法則的提煉,在法則的總結中體現(xiàn)化歸
的思想方法的滲透。
教學方法:觀察探究、合作交流。
三、教學過程設計:
在課前讓學生玩有理數(shù)加法中的撲克牌游戲。
1、情境引入:
師:同學們,大家都看過天氣預報,有沒有注意到里面有“溫差”之說呢?
有效性分析:通過設計“溫差”這一問題情境,進而順利的進入課題,并從列算式角度加以認識,得到一些有理數(shù)減法算式,為后面的化歸思想方法歸納出有理數(shù)減法法則做好素材和算式上的準備。
2、建構活動
活動1:計算溫差
師:有理數(shù)加減3
生1:利用溫度計的刻度直觀得到算式5 + 3 = 8
生2:利用日溫差的定義可得到算式:5-(-3)= 8
師:比較兩式,我們有什么發(fā)現(xiàn)嗎?
生:“-”變“+”,(-3)變3、
活動2:通過舉例子驗證剛才的變化過程,加深對有理數(shù)減法算式的`理解。
有理數(shù)加減3
有效性分析:從生活情境中,學生獲取了豐富的素材和有理數(shù)減法運算的算式,為下面觀察算式特點,總結運算方法做好準備。這種由算式到法則的過程,使學生從心理上更易接受,令算式更有實際背景和說服力,為有理數(shù)減法運算法則的提煉和數(shù)學化打下了良好的基礎。
3、數(shù)學化認識
5-(-3)=5 + 3(-3)-(-5)=(-3)+ 5
3-(-5)=3 +5(-3)-5=(-3)+(-5)
師:綜合上面算式的共同特點即被減數(shù)不變,減號變加號,減數(shù)變成它的相反數(shù),我們就得到了有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。有理數(shù)減法概念_百度知道
有效性分析:“化歸”的思想和方法是初中數(shù)學中最重要的方法之一,本節(jié)課的數(shù)學化過程正是通過觀察已有的算式來發(fā)現(xiàn)和總結“有理數(shù)的減法法則”的,在教學中滲透了“化歸”思想。此外,在化歸為加法運算時,進一步復習加法法則,強化了有理數(shù)的減法與小學學的減法之間的聯(lián)系和區(qū)別:即小學的減法是有理數(shù)減法中的一種特例,即減數(shù)比被減數(shù)小,;當減數(shù)比被減數(shù)大時,小學無法解決的問題現(xiàn)在可以解決了。
4、基礎性訓練
例1計算下列各題
、0-(-22)
、8.5-(-1.5)
、郏+4)-16
、埽12)14
、15-(-7)
⑥(+2)-(+8)
基礎練習:
1、課本p 32
2、求出數(shù)軸上兩點之間的距離:
(1)表示數(shù)10的點與表示數(shù)4的點;
。2)表示數(shù)2的點與表示數(shù)-4的點;
。3)表示數(shù)-1的點與表示數(shù)-6的點。
有效性分析:基礎性訓練中安排了典型例題,著重訓練學生利用剛學過的“有理數(shù)的減法法則”進行計算的正確性和熟練度,并規(guī)范了計算題目的格式,在格式中進一步熟悉法則,正確運用法則,讓學生明確有理數(shù)的減法的一般步驟是:
。1)變符號;
(2)用加法法則進行計算
3、拓展延伸
[原創(chuàng)]巧用撲克牌進行有理數(shù)簡單運算練習初中數(shù)學論壇—中學數(shù)學教育論壇—人教論壇— powered by discuz!
有效性分析:通過撲克牌的兩個活動,進一步調(diào)動學生學習有理數(shù)減法運算法則的積極性和主動性,寓教于樂,在活動中通過小組帶動班上所有學生學習的熱情,同時在活動中更加明確運算法則,做到熟練而準確地運用法則,感受并思考:“兩個有理數(shù)相減,差一定比兩個減數(shù)小嗎?”的問題,以區(qū)別于學生在小學中熟知的減法運算,更好的完成本節(jié)課的教學目標。
四、教學反思
“有理數(shù)的加法與減法”的教學,可以有多種不同的設計方案,但大體上可以分為兩類:一類是由老師較快的給出法則,用較多的時間組織學生練習,以求熟練的掌握法則;另一類是適當?shù)募訌姺▌t的形成過程,從而在此過程中著力培養(yǎng)學生的觀察、比較、歸納能力,相應的適當壓縮法則的練習,如本教學設計。本節(jié)課注重學生自我學習的能力,學生在學習了有理數(shù)加法后,再學習有理數(shù)的減法,教師把學習的主動權歸還學生,不再是教師講,學生聽,現(xiàn)在變?yōu)閷W生講,教師聽,由學生自己發(fā)現(xiàn)問題,分析問題,解決問題。學生與教師分享彼此的思考,經(jīng)驗和知識,交流彼此的情感,體驗與感悟,豐富教學內(nèi)容,求的新的發(fā)展,從而達到共識,共享,共進。
有理數(shù)的加法教案11
教學目標:
1、知識與技能:理解有理數(shù)加法的運算律,能熟練地運用運算律簡化有理數(shù)加法的運算,能靈活運用有理數(shù)的加法解決簡單實際問題。
2、過程與方法:經(jīng)過有理數(shù)加法運算律的探索過程,了解加法的運算律,能用運算律簡化運算。
重點、難點:
1、重點:運算律的理解及合理、靈活的運用。
2、難點:合理運用運算律。
教學過程:
一、創(chuàng)設情景,導入新課
1、敘述有理數(shù)的加法法則。
2、有理數(shù)加法與小學里學過的數(shù)的加法有什么區(qū)別和聯(lián)系?
答:進行有理數(shù)加法運算,先要根據(jù)具體情況正確地選用法則,確定和的符號,這與小學里學過的數(shù)的加法是不同的;而計算和的絕對值,用的是小學里學過的.加法或減法運算。
二、合作交流,解讀探究
1、計算下列各題,并說明是根據(jù)哪一條運算法則?
。1)(—9.18)+6.18;
(2)6.18+(—9.18);
(3)(—2.37)+(—4.63)
2、計算下列各題:
。1)+(—4);
(2)8+;
(3)+(—11);
(4)(—7)+;
。5)+(+27);
(6)(—22)+。
通過上面練習,引導學生得出:
交換律兩個有理數(shù)相加,交換加數(shù)的位置,和不變。
用代數(shù)式表示上面一段話:
a+b=b+a
運算律式子中的字母a,b表示任意的一個有理數(shù),可以是正數(shù),也可以是負數(shù)或者零。在同一個式子中,同一個字母表示同一個數(shù)。
結合律三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
用代數(shù)式表示上面一段話:
。╝+b)+c=a+(b+c)
這里a,b,c表示任意三個有理數(shù)。
根據(jù)加法交換律和結合律可以推出:三個以上的有理數(shù)相加,可以任意交換加數(shù)的位置,也可以先把其中的幾個數(shù)相加。
三、應用遷移,鞏固提高
例(P22例3)計算:
。1)33+(—2)+7+(—8)
。2)4.375+(—82)+(—4.375)
引導學生發(fā)現(xiàn),在本例中,把正數(shù)與負數(shù)分別結合在一起再相加,有相反數(shù)的先把相反數(shù)相加;能湊整的先湊整;有分母相同的,先把同分母的數(shù)相加,計算就比較簡便。
本例先由學生在筆記本上解答,然后教師根據(jù)學生解答情況指定幾名學生板演,并引導學生發(fā)現(xiàn),簡化加法運算一般是三種方法:首先消去互為相反數(shù)的兩數(shù)(其和為0),同號結合或湊整數(shù)。
例2(P23例4)
教師通過啟發(fā),由學生列出算式,再讓學生思考,如何應用運算律,使計算簡便。第一問可以讓學生自已作行程示意圖幫助理解,注意第一問和第二問的區(qū)別。
練習課本P23練習:1、2
四、總結反思
本節(jié)課你有哪些收獲?
五、作業(yè)
1、課本P27習題1.4A組第3、4題
2、課本P28習題1.4B組第12題
有理數(shù)的加法教案12
教學目標
1.了解有理數(shù)加法的意義,理解有理數(shù)加法法則的合理性;
2.能運用有理數(shù)加法法則,正確進行有理數(shù)加法運算;
3.經(jīng)歷探索有理數(shù)加法法則的過程,感受數(shù)學學習的方法;
4.通過積極參與探究性的數(shù)學活動,體驗數(shù)學來源于實踐并為實踐服務的思想,激發(fā)學生的學習興趣,同時培養(yǎng)學生探究性學習的能力.
教學重點
能運用有理數(shù)加法法則,正確進行有理數(shù)加法運算.
教學難點
經(jīng)歷探索有理數(shù)加法法則的過程,感受數(shù)學學習的方法.
教學過程(教師)
一、創(chuàng)設情境
小學里,我們學過加法和減法運算,引進負數(shù)后,怎樣進行有理數(shù)的加法和減法運算呢?
1.試一試
甲、乙兩隊進行足球比賽.如果甲隊在主場贏了3球,在客場輸了2球,那么兩場比賽后甲隊凈勝1球.
你能把上面比賽的過程及結果用有理數(shù)的算式表示出來嗎?
做一做:比賽中勝負難料,兩場比賽的結果還可能有哪些情況呢?動動手填表:
2.我們知道,求兩次輸贏的總結果,可以用加法來解答,請同學們先個人研究,后小組交流.
你還能舉出一些應用有理數(shù)加法的實際例子嗎?
二、探究歸納
1.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向左移動5個單位長度,再向右移動3個單位長度,這時筆尖停在“”的位置上.
用數(shù)軸和算式可以將以上過程及結果分別表示為:
算式:________________________
2.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向右移動3個單位長度,再向左移動2個單位長度,這時筆尖停在“1”的位置上.
用數(shù)軸和算式可以將以上過程及結果分別表示為:
算式:________________________
3.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向左移動3個單位長度,再向左移動2個單位長度,這時筆尖的位置表示什么數(shù)?
請用數(shù)軸和算式分別表示以上過程及結果:
算式:________________________
仿照上面的做法,請在數(shù)軸上呈現(xiàn)下面的.算式所表示的筆尖運動的過程和結果.
4.觀察、思考、討論、交流并得出有理數(shù)加法法則.
討論:兩個有理數(shù)相加時,和的符號及絕對值怎樣確定?你能找到有理數(shù)相加的一般方法嗎?
《2.5有理數(shù)的加法與減法》課時練習
1.七年級(3)班同學李亮在一次班級運動會上參加三級跳遠比賽,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最遠?成績是多少?
2.一只小蟲從某點P出發(fā),在一條直線上來回爬行,假定把向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),則爬行各段路程(單位:厘米)依次為:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.
(1)通過計算說明小蟲是否回到起點P.
(2)如果小蟲爬行的速度為0.5厘米/秒,那么小蟲共爬行了多長時間.
2.5有理數(shù)的加法與減法:同步練習
1.高速公路養(yǎng)護小組,乘車沿東西向公路巡視維護,如果約定向東為正,向西為負,當天的行駛記錄如下(單位:km)
+17,-9,+7,-15,-3,+11,-6,-8,+5,+16
(1)養(yǎng)護小組最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?
(2)養(yǎng)護過程中,最遠外離出發(fā)點有多遠?
(3)若汽車耗油量為0.09升/km,則這次養(yǎng)護共耗油多少升?
有理數(shù)的加法教案13
教學目標:
知識與技能:
1.進一步熟練掌握有理數(shù)加法的法則。
2.掌握有理數(shù)加法的運算律,并能運用加法運算律簡化運算。
過程與方法:
啟發(fā)引導式教學,能夠由特殊到一般、由一般到特殊,體會研究數(shù)學的一些基本方法。
情感、態(tài)度與價值觀:
1.培養(yǎng)學生的分類與歸納能力。
2.強化學生的數(shù)形結合思想。
3.提高學生的自學以及理解能力,激發(fā)學生學習數(shù)學的興趣。
教學重點:
加法運算律的靈活運用,解決實際問題。
教學難點:
能運用加法運算律簡化運算,加法在實際中的應用。
教學方法:
采取啟發(fā)式教學法及情感教學,引導學生主動思考,主動探索。用大量的實例讓學生得出規(guī)律。
教學準備:
1.復習有理數(shù)的加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)異號兩數(shù)相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
(3)一個數(shù)同0相加,仍得這個數(shù)。
2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8
教學過程:
(一)情境引入,提出問題:
鼓勵學生通過自己的探索,交流、歸納,自主得出有理數(shù)加法的運算律。
1.敘述有理數(shù)的加法法則.
2.小學學過的加法的運算律是不是也可以擴充到有理數(shù)范圍?
3.計算下列各組數(shù)的值,并觀察尋找規(guī)律。
(1) (-7)+(-5) (-5)+(-7)
(2) [8+(-5)]+(-4) 8+[(-5)+(-4)]
(3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]
結論:在有理數(shù)運算中,加法交換律、結合律仍然成立。
(二)活動探究,猜想結論:
交換律——兩個有理數(shù)相加,交換加數(shù)的位置,和不變.
用代數(shù)式表示:a+b=b+a
運算律式子中的字母a、b表示任意的.一個有理數(shù),可以是正數(shù),也可以是負數(shù)或者零.
在同一個式子中,同一個字母表示同一個數(shù).
結合律——三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變.
用代數(shù)式表示:(a+b)+c=a+(b+c)
這里a、b、c表示任意三個有理數(shù).
(三)驗證結論:
例1計算16+(-25)+24+(-32)
(引導學生發(fā)現(xiàn),在本例中,把正數(shù)與負數(shù)分別結合在一起再相加,計算就比較簡便)
解:16+(-25)+24+(-32)
=[16+24]+[(-25)+(-32)] (加法結合律)
=40+(-57) (同號相加法則)
=-17 (異號相加法則)
例2計算:31+(-28)+28+69
(引導學生發(fā)現(xiàn),在本例中,把互為相反數(shù)的兩個數(shù)相加得0,計算比較簡便)
解:31+(-28)+28+69
=31+69+[(-28)+28]
=100+0
=100
《2.4.1有理數(shù)的加法法則》同步練習
3.若兩個有理數(shù)的和為負數(shù),那么這兩個有理數(shù)( )
A.一定都是負數(shù)B.一正一負,且負數(shù)的絕對值大
C.一個為零,另一個為負數(shù)D.至少有一個是負數(shù)
4.兩個有理數(shù)的和( )
A.一定大于其中的一個加數(shù)
B.一定小于其中的一個加數(shù)
C.和的大小由兩個加數(shù)的符號而定
D.和的大小由兩個加數(shù)的符號與絕對值而定
5.如果a,b是有理數(shù),那么下列各式中成立的是( )
A.如果a<0,b<0,那么a+b>0
B.如果a>0,b<0,那么a+b>0
C.如果a>0,b<0,那么a+b<0
D.如果a>0,b<0,且|a|>|b|,那么a+b>0
《2.4.2有理數(shù)的加法運算律》測試
7.張大伯共有7塊麥田,今年的收成與去年相比(增產(chǎn)為正,減產(chǎn)為負)情況如下(單位:kg):+320,-170,-320,+130,+150,+40,-150.則今年小麥的總產(chǎn)量與去年相比( )
A.增產(chǎn)20 kg B.減產(chǎn)20 kg C.增長120 kg D.持平
8.一口井水面比井口低3米,一只蝸牛從水面沿著井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,卻又下滑了0.15米;第三次往上爬了0.7米,卻又下滑了0.15米;第四次往上爬了0.75米,卻又下滑了0.2米;第五次往上爬了0.55米,沒有下滑;第六次往上爬了0.48米,此時蝸牛有沒有爬出井口?請通過列式計算加以說明
有理數(shù)的加法教案14
教學目的:
經(jīng)歷探索有理數(shù)加法法則,理解有理數(shù)加法的意義。初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)加法運算。
教學重點:
有理數(shù)的加法法則
教學難點:
異號兩數(shù)相加的法則
教學教程:
一、復習提問:
1、如果向東走5米記作+5米,那么向
西走3米記作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新課
小明在一條東西向的跑道上,先走了5米,又走了3米,能否確定他現(xiàn)在位于原來位置的哪個方向?與原來相距多少米?規(guī)定向東的方向為正方向
提問:這題有幾種情況?
小結:有以下四種情況
。1)兩次都向東走,
。2)兩次都向西走
。3)先向東走,再向西走
。4)先向西走,再向東走
根據(jù)小結,我們再分析每一種情況:
(1)向東走5米,再向東走3米,一共向東走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向東走了多少米?
-5-3(-3)+(-5)=-8
。ǎ常┫认驏|走5米,再向西走3米,兩次一共向東走了多少米?
。常担ǎ担ǎ常剑
(4)先向西走5米,再向東走3米,兩次一共向東走了多少米?
-5+3(-5)+(+3)=-2
下面再看兩種特殊情況:
。ǎ担┫驏|走5米,再向西走5米,兩次一共向東走了多少米
。担担ǎ担ǎ担剑
。ǎ叮┫蛭髯撸得,再向東走0米,兩次一共向東走了多少米?
-5(-5)+0=-5
小結:總結前的六種情況:
同號兩數(shù)相加:(+5)+(+3)=+8
。ǎ担ǎ常剑
異號兩數(shù)相加:(+5)+(-3)=2
。ǎ担ǎ常剑
。ǎ担ǎ担剑
一數(shù)與零相加:(-5)+0=-5
得出結論:有理數(shù)加法法則
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加
2、絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得零
3、一個數(shù)與零相加,仍得這個數(shù)
例如:
。ǎ4)+(-5)(同號兩數(shù)相加)
解:=-()(取相同的符號)
=-9(并把絕對值相加)
。ǎ玻ǎ叮ń^對值不等的'異號兩數(shù)相加)
解:=+()(取絕對值較大的符號)
。剑矗ㄓ幂^大的絕對值減去較小的絕對值)
練習:
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
。、7+(-4)=
。、4+(-4)=
。、9+(-2)=
。丁ⅲǎ0.5)+4.4=
。、(-9)+0=
8、0+(-3)=
計算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
練習:
。1)15+(-22)=
(2)(-13)+(-8)=
。3)(-0·9)+1·5=
(4)2·7+(-3·5)=
。5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
練習三:
1、填空:
。1)+11=27(2)7+=4
。3)(-9)+=9(4)12+=0
。5)(-8)+=-15(6)+(-13)=-6
2、用“<”或“>”號填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b<0,|a|>|b|,那么a+b0;
(4)如果a<0,b>0,|a|>|b|,那么a+b0
小結:
1、掌握有理數(shù)的加法法則,正確地進
行加法運算。
2、兩個有理數(shù)相加,首先判斷加法類
型,再確定和的符號,最后確定和的絕對值。
作業(yè):課本第38頁2、3
第40頁1、2
有理數(shù)的加法教案15
教學目標:
1通過學生身邊可以嘗試、探索的場景,經(jīng)歷有理數(shù)加法法則得出的過程,理解有理數(shù)加法法則的合理性。2能進行簡單的有理數(shù)加法運算。3發(fā)展觀察、歸納、猜測驗證等能力。
重點難點:
重點:有理數(shù)加法法則的得出,和的符號的確定;難點:異號兩數(shù)相加
教學過程
一激情引趣,導入新課
1我們早知道正有理數(shù)和零可以做加法運算,所有的有理數(shù)是否都可以進行加法運算呢?這就是我們這節(jié)課要研究的問題,先來分析一下,所有的有理數(shù)相加的時候有哪些情況呢?請你想一想
2從前有一個文盲記錄家里的收入和支出的時候是這樣的,用一顆紅豆代表收入一文錢,用一顆黑豆代表支出一文錢,有一個月他發(fā)現(xiàn)記賬的盒子里有10顆紅豆6顆黑豆,他發(fā)現(xiàn)紅豆比黑豆多了4顆,于是他不僅知道了這個月結余了4文錢還知道了自己這個月的收入和支出情況。我們可以用一個圖形來表示他這種記賬方式!啊稹,“●”分別表紅豆和黑豆。
,這個圖形其實就是一個有理數(shù)的加法算式:(+10)+(-6)=+4下面我們借助數(shù)軸來理解有理數(shù)的加法運算。
二合作交流,探究新知
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向,一個單位代表1千米
1同號兩數(shù)相加
小亮從O點出發(fā),先向西移動2個千米休息一會兒,再向西移動3個千米,兩次走路的總效果等于從點O出發(fā)向_____走了_______千米,用式子表示為_______________.
從上,你發(fā)現(xiàn)了嗎,同號兩數(shù)相加結果的符號怎么確定?結果的絕對值怎么確定?請把你的發(fā)現(xiàn)填在下面的框里。
同號兩數(shù)相加,取__________的`符號,并把它們的_____________相加。
2異號兩數(shù)相加
(1)小明先從點O出發(fā),先向東走4千米,發(fā)現(xiàn)口袋里的鑰匙丟了,急急忙忙掉頭向西走了1千米,找到了掉在路邊的鑰匙,小明這兩次走路的效果總等于從點O出發(fā)向___走了____千米,用式子表示為_________________________.
(2)小李先從點O出發(fā),先向東走了1米,突然想起今天家里有事,趕緊掉頭向西往家里走,走了3千米到達家中,小李兩次走路的總效果等于等于吃哦從點O出發(fā),向___走了
_____千米。用式子表達為_______________________.
從上面例子,你發(fā)現(xiàn)了異號兩數(shù)怎么做嗎?把你的結論填在下框中。
異號兩數(shù)相加,絕對值不相等時,取__________________的符號,并用_________的絕對值
減去_______________的絕對值。
3一個數(shù)和零相加,以及互為相反數(shù)相加
(1)某個人第一批貨獲得利潤3萬元,第二批貨物保本,這兩批貨物總的利潤是多少萬元?
(2)某人第一批貨物的利潤是5萬元,第二批貨物虧損5萬元,這兩批貨物總的利潤是多少?
從上問題,你發(fā)現(xiàn)了什么?把你的結論寫在下框中,
互為相反數(shù)的兩個相加得_______,一個數(shù)和零相加,任得____________________.
三應用遷移,拓展提高
例1計算(1)(-8)+(-12)(2)(-3.75)+(-0.25)
(3)(-5)+9(4)(–10)+7
例2計算(1)(-3)+(2)(-)+(-)
例3填空
(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=
四課堂練習,鞏固提高
P21
五反思小結鞏固提高
有理數(shù)的加法法則有哪些?請你把它們寫在下面:
1
2
3
4
六作業(yè)p24-25A組1-4B1
【有理數(shù)的加法教案】相關文章:
《有理數(shù)的加法》教案02-25
有理數(shù)的加法與減法教案01-28
有理數(shù)的加法教案15篇02-23
有理數(shù)加法教學反思11-11
加法的教案04-12
《5的加法》教案01-30
大班加法的教案03-07
67的加法教案12-06
《加法的估算》教案09-15