ww亚洲ww亚在线观看,wwwxxxx日韩高清,真实14初次破初视频在线播放,五月丁香婷婷综合激情,日本熟妇丰满的大屁股,a级免费按摩黄片,黄色视频.wwww

二次根式教案

時(shí)間:2024-08-04 20:59:37 教案 我要投稿

二次根式教案模板9篇

  作為一名無(wú)私奉獻(xiàn)的老師,就有可能用到教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。那么什么樣的教案才是好的呢?以下是小編收集整理的二次根式教案9篇,希望對(duì)大家有所幫助。

二次根式教案模板9篇

二次根式教案 篇1

  目 標(biāo)

  1. 熟練地運(yùn)用二次根式的性質(zhì)化簡(jiǎn)二次根式;

  2. 會(huì)運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題;

  3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。

  教學(xué)設(shè)想

  本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識(shí)和綜合運(yùn)用,思路比較復(fù)雜。

  教 學(xué) 程序 與 策 略

  一、預(yù)習(xí)檢測(cè)

  1.解決節(jié)前問(wèn)題:

  如圖,架在消防車(chē)上的云梯AB長(zhǎng)為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

  歸納:

  在日常生活和生產(chǎn)實(shí)際中,我們?cè)诮鉀Q一 些問(wèn)題,尤其是涉及直角三角形邊長(zhǎng)計(jì)算的問(wèn)題時(shí)經(jīng)常用到二次根式及其運(yùn)算。

  二、合作交流:

  1、:如圖,扶梯AB的坡比(BE與AE的長(zhǎng)度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過(guò)了多少路程(結(jié)果要求先化簡(jiǎn),再取近似值,精確到0.01米)

  讓學(xué)生有充分的時(shí)間閱讀問(wèn)題,并結(jié)合圖形分析問(wèn)題:(1)所求的路程實(shí)際上是哪些線段的和?哪些線段的長(zhǎng)是已知的?哪些線段的.長(zhǎng)是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡(jiǎn)嗎?

  注意解題格式

  教 學(xué) 程 序 與 策 略

  三、鞏固練習(xí):

  完成課本P17、1,組長(zhǎng)檢查反饋;

  四、拓展提高:

  1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長(zhǎng)方形紙條。(1)分別求出3張長(zhǎng)方形紙條的長(zhǎng)度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過(guò)多少cm。

  師生共同分析解題思路,請(qǐng)學(xué)生寫(xiě)出解題過(guò)程。

  五、課堂小結(jié):

  1.談一談:本節(jié)課你有什么收獲?

  2.運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題時(shí)應(yīng)注意的的問(wèn)題

  六、堂堂清

  1: 作業(yè)本(2)

  2:課本P17頁(yè):第4、5題選做。

二次根式教案 篇2

  第十六章 二次根式

  代數(shù)式用運(yùn)算符號(hào)把數(shù)和表示數(shù)的字母連接起來(lái)的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個(gè)的數(shù)字或單個(gè)的字母也是代數(shù)式

  5.5(解析:這類(lèi)題保證被開(kāi)方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

  6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

  7.解:(1) . (2)寬:3 ;長(zhǎng):5 .

  8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

  9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

  10.解析:在利用=|a|=化簡(jiǎn)二次根式時(shí),當(dāng)根號(hào)內(nèi)的因式移到根號(hào)外面時(shí),一定要注意原來(lái)根號(hào)里面的符號(hào),這也是化簡(jiǎn)時(shí)最容易出錯(cuò)的地方.

  解:乙的解答是錯(cuò)誤的.因?yàn)楫?dāng)a=時(shí),=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

  本節(jié)課通過(guò)“觀察——?dú)w納——運(yùn)用”的模式,讓學(xué)生對(duì)知識(shí)的.形成與掌握變得簡(jiǎn)單起來(lái),將一個(gè)一個(gè)知識(shí)點(diǎn)落實(shí)到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.

  在探究二次根式的性質(zhì)時(shí),通過(guò)“提問(wèn)——追問(wèn)——討論”的形式展開(kāi),保證了活動(dòng)有一定的針對(duì)性,但是學(xué)生發(fā)揮主體作用不夠.

  在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.

  練習(xí)(教材第4頁(yè))

  1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

  2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

  習(xí)題16.1(教材第5頁(yè))

  1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時(shí),有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時(shí),有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時(shí),有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時(shí),有意義.

  2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

  3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因?yàn)閳A的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長(zhǎng)為2x,則它的鄰邊長(zhǎng)為3x.由長(zhǎng)方形的面積公式得2x3x=S,所以x=±,因?yàn)閤=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個(gè)長(zhǎng)方形的相鄰兩邊的長(zhǎng)分別為和.

  4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

  5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

  6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長(zhǎng)為.

  7.解:(1)∵x2+1>0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時(shí), 在實(shí)數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時(shí),在實(shí)數(shù)范圍內(nèi)有意義.

  8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時(shí),t= =,當(dāng)h=25時(shí),t= =.故當(dāng)h=10和h=25時(shí),小球落地所用的時(shí)間分別為 s和 s.

  9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

  10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時(shí), r= =,當(dāng)V=10π時(shí),r= =1,當(dāng)V=20π時(shí),r= =.

  如圖所示,根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,化簡(jiǎn):+.

  〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡(jiǎn).

  解:由數(shù)軸可得:a+b<0,a-b>0,

  ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

  [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡(jiǎn)二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

  已知a,b,c為三角形的三條邊,則+= .

  〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號(hào),再去根號(hào)、絕對(duì)值符號(hào)并化簡(jiǎn).因?yàn)閍,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

  [解題策略] 此類(lèi)化簡(jiǎn)問(wèn)題要特別注意符號(hào)問(wèn)題.

  化簡(jiǎn):.

  〔解析〕 題中并沒(méi)有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

  解:當(dāng)x≥3時(shí),=|x-3|=x-3;

  當(dāng)x<3時(shí),=|x-3|=-(x-3)=3-x.

  [解題策略] 化簡(jiǎn)時(shí),先將它化成|a|,再根據(jù)絕對(duì)值的意義分情況進(jìn)行討論.

  5

  O

  M

二次根式教案 篇3

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的概念.

  2.內(nèi)容解析

  本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、立方根,知道開(kāi)方與乘方互為逆運(yùn)算的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的概念. 它不僅是對(duì)前面所學(xué)知識(shí)的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).

  教材先設(shè)置了三個(gè)實(shí)際問(wèn)題,這些問(wèn)題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過(guò)例1討論了二次根式中被開(kāi)方數(shù)字母的取值范圍的問(wèn)題,加深學(xué)生對(duì)二次根式的定義的理解.

  本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

 。1)體會(huì)研究二次根式是實(shí)際的需要.

  (2)了解二次根式的概念.

  2. 教學(xué)目標(biāo)解析

 。1)學(xué)生能用二次根式表示實(shí)際問(wèn)題中的數(shù)量和數(shù)量關(guān)系,體會(huì)研究二次根式的必要性.

 。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開(kāi)方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開(kāi)方數(shù)字母的取值范圍.

  三、教學(xué)問(wèn)題診斷分析

  對(duì)于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負(fù)性,”即被開(kāi)方數(shù) ≥0是非負(fù)數(shù), 的算術(shù)平方根 ≥0也是非負(fù)數(shù).教學(xué)時(shí)注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開(kāi)方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷.

  本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性.

  四、教學(xué)過(guò)程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問(wèn)題

  問(wèn)題1你能用帶有根號(hào)的的式子填空嗎?

  (1)面積為3 的正方形的邊長(zhǎng)為_(kāi)______,面積為S 的正方形的邊長(zhǎng)為_(kāi)______.

  (2)一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2 倍,面積為130?,則它的寬為_(kāi)_____.

 。3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間 t(單位:s)與開(kāi)始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

  師生活動(dòng):學(xué)生獨(dú)立完成上述問(wèn)題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià).

  【設(shè)計(jì)意圖】讓學(xué)生在填空過(guò)程中初步感知二次根式與實(shí)際生活的.緊密聯(lián)系,體會(huì)研究二次根式的必要性.

  問(wèn)題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

  師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出各式的意義,概括它們的共同特征:都表示一個(gè)非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.

  【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊.

  2.抽象概括,形成概念

  問(wèn)題3 你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?

  師生活動(dòng):學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱(chēng)為二次根號(hào).

  【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由特殊到一般的過(guò)程,培養(yǎng)學(xué)生的概括能力.

  追問(wèn):在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?

  師生活動(dòng):教師引導(dǎo)學(xué)生討論,知道二次根式被開(kāi)方數(shù)必須是非負(fù)數(shù)的理由.

  【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)二次根式被開(kāi)方數(shù)必須是非負(fù)數(shù)的理解.

  3.辨析概念,應(yīng)用鞏固

  例1 當(dāng) 時(shí)怎樣的實(shí)數(shù)時(shí), 在實(shí)數(shù)范圍內(nèi)有意義?

  師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對(duì)二次根式的被開(kāi)方數(shù)為非負(fù)數(shù)的理解.

  例2 當(dāng) 是怎樣的實(shí)數(shù)時(shí), 在實(shí)數(shù)范圍內(nèi)有意義? 呢?

  師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問(wèn).

  【設(shè)計(jì)意圖】在辨析中,加深學(xué)生對(duì)二次根式被開(kāi)方數(shù)為非負(fù)數(shù)的理解.

  問(wèn)題4 你能比較 與0的大小嗎?

  師生活動(dòng):通過(guò)分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強(qiáng)化學(xué)生對(duì)二次根式本身為非負(fù)數(shù)的理解,

  【設(shè)計(jì)意圖】通過(guò)這一活動(dòng)的設(shè)計(jì),提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí);培養(yǎng)學(xué)生分類(lèi)討論和歸納概括的能力.

  4.綜合運(yùn)用,鞏固提高

  練習(xí)1 完成教科書(shū)第3頁(yè)的練習(xí).

  練習(xí)2 當(dāng)x 是什么實(shí)數(shù)時(shí),下列各式有意義.

 。1) ;(2) ;(3) ;(4) .

  【設(shè)計(jì)意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

  【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開(kāi)闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

  5.總結(jié)反思

  教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題.

 。1)本節(jié)課你學(xué)到了哪一類(lèi)新的式子?

 。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

  (3)二次根式與算術(shù)平方根有什么關(guān)系?

  師生活動(dòng):教師引導(dǎo),學(xué)生小結(jié).

  【設(shè)計(jì)意圖】:學(xué)生共同總結(jié),互相取長(zhǎng)補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法.

  6.布置作業(yè):

  教科書(shū)習(xí)題16.1第1,3,5, 7,10題.

  五、目標(biāo)檢測(cè)設(shè)計(jì)

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【設(shè)計(jì)意圖】考查對(duì)二次根式概念的了解,要特別注意被開(kāi)方數(shù)為非負(fù)數(shù).

  2. 當(dāng) 時(shí),二次根式 無(wú)意義.

  【設(shè)計(jì)意圖】考查二次根式無(wú)意義的條件,即被開(kāi)方數(shù)小于0,要注意審題.

  3.當(dāng) 時(shí),二次根式 有最小值,其最小值是 .

  【設(shè)計(jì)意圖】本題主要考查二次根式被開(kāi)方數(shù)是非負(fù)數(shù)的靈活運(yùn)用.

  4.對(duì)于 ,小紅根據(jù)被開(kāi)方數(shù)是非負(fù)數(shù),得 出的取值范圍是 ≥ .小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出 的取值范圍.

  【設(shè)計(jì)意圖】考查二次根式的被開(kāi)方數(shù)為非負(fù)數(shù)和一個(gè)式子的分母不能為0,解題時(shí)需要綜合考慮.

二次根式教案 篇4

  【教學(xué)目標(biāo)】

  1.運(yùn)用法則

  進(jìn)行二次根式的乘除運(yùn)算;

  2.會(huì)用公式

  化簡(jiǎn)二次根式。

  【教學(xué)重點(diǎn)】

  運(yùn)用

  進(jìn)行化簡(jiǎn)或計(jì)算

  【教學(xué)難點(diǎn)】

  經(jīng)歷二次根式的乘除法則的探究過(guò)程

  【教學(xué)過(guò)程】

  一、情境創(chuàng)設(shè):

  1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過(guò)二次根式的哪些性質(zhì)?

  2.計(jì)算:

  二、探索活動(dòng):

  1.學(xué)生計(jì)算;

  2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?

  3.概括:

  得出:二次根式相乘,實(shí)際上就是把被開(kāi)方數(shù)相乘,而根號(hào)不變。

  將上面的公式逆向運(yùn)用可得:

  積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

  三、例題講解:

  1.計(jì)算:

  2.化簡(jiǎn):

  小結(jié):如何化簡(jiǎn)二次根式?

  1.(關(guān)鍵)將被開(kāi)方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

  2.P62結(jié)果中,被開(kāi)方數(shù)應(yīng)不含能開(kāi)得盡方的因數(shù)或因式。

  四、課堂練習(xí):

  (一).P62 練習(xí)1、2

  其中2中(5)

  注意:

  不是積的形式,要因數(shù)分解為36×16=242.

  (二).P67 3 計(jì)算 (2)(4)

  補(bǔ)充練習(xí):

  1.(x>0,y>0)

  2.拓展與提高:

  化簡(jiǎn):1).(a>0,b>0)

  2).(y

  2.若,求m的'取值范圍。

  ☆3.已知:,求的值。

  五、本課小結(jié)與作業(yè):

  小結(jié):二次根式的乘法法則

  作業(yè):

  1).課課練P9-10

  2).補(bǔ)充習(xí)題

二次根式教案 篇5

  一、內(nèi)容解析

  本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過(guò)觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).

  對(duì)于二次根式的性質(zhì),教材沒(méi)有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過(guò) “探究”欄目中給出四個(gè)具體問(wèn)題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

 。1)經(jīng)歷探索二次根式的性質(zhì)的過(guò)程,并理解其意義;

 。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

 。3)了解代數(shù)式的概念.

  2.目標(biāo)解析

 。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);

 。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

  (3)學(xué)生能從已學(xué)過(guò)的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.

  三、教學(xué)問(wèn)題診斷分析

  二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問(wèn)題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

  本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

  四、教學(xué)過(guò)程設(shè)計(jì)

  1.探究性質(zhì)1

  問(wèn)題1 你能解釋下列式子的含義嗎?

  師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.

  【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.

  問(wèn)題2 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).

  師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).

  【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

  問(wèn)題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

  師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

  【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

  例2 計(jì)算

  (1)

 。2)

  師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.

  2.探究性質(zhì)2

  問(wèn)題4 你能解釋下列式子的含義嗎?

  師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.

  【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.

  問(wèn)題5 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).

  師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).

  【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

  問(wèn)題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

  師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

  【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

  例3 計(jì)算

  (1)

  (2)

  師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

  【設(shè)計(jì)意圖】鞏固二次根式的'性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.

  3.歸納代數(shù)式的概念

  問(wèn)題7 回顧我們學(xué)過(guò)的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?

  師生活動(dòng):學(xué)生概括式子的共同特征,得得出代數(shù)式的概念.

  【設(shè)計(jì)意圖】學(xué)生通過(guò)觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

  4.綜合運(yùn)用

  (1)算一算:

  【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).

  (2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?

  【設(shè)計(jì)意圖】通過(guò)此問(wèn)題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開(kāi)闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

 。3)談一談你對(duì) 與 的認(rèn)識(shí).

  【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.

  5.總結(jié)反思

 。1)你知道了二次根式的哪些性質(zhì)?

 。2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?

 。3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過(guò)程?

  (4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類(lèi)字母表示數(shù)得到的式子?說(shuō)說(shuō)你對(duì)代數(shù)式的認(rèn)識(shí).

  6.布置作業(yè):教科書(shū)習(xí)題16.1第2,4題.

二次根式教案 篇6

  教材分析:

  本節(jié)內(nèi)容出自九年級(jí)數(shù)學(xué)上冊(cè)第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡(jiǎn)二次根式和二次根式的乘除的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡(jiǎn)。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問(wèn)題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問(wèn)題的需要。通過(guò)探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問(wèn)題,來(lái)提高我們用數(shù)學(xué)解決實(shí)際問(wèn)題的意識(shí)和能力。另外,通過(guò)本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

  學(xué)生分析:

  本節(jié)課的內(nèi)容是知識(shí)的延續(xù)和創(chuàng)新,學(xué)生積極主動(dòng)的.投入討論、交流、建構(gòu)中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識(shí)和創(chuàng)新能力,通過(guò)自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識(shí)性評(píng)價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹(shù)立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

  設(shè)計(jì)理念:

  新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動(dòng)手實(shí)踐、自主探究、合作交流,來(lái)倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識(shí)研究。教師從過(guò)去知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動(dòng)的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過(guò)程中教師設(shè)置開(kāi)放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問(wèn)題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過(guò)開(kāi)放式命題,嘗試從不同角度尋求解決問(wèn)題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動(dòng)中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說(shuō)明所獲討論的有效性,并對(duì)推論進(jìn)行評(píng)價(jià)。從而營(yíng)造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

  教學(xué)目標(biāo)知識(shí)與技能目標(biāo):

  會(huì)化簡(jiǎn)二次根式,了解同類(lèi)二次根式的概念,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法;通過(guò)加減運(yùn)算解決生活的實(shí)際問(wèn)題。

  過(guò)程與方法目標(biāo):

  通過(guò)類(lèi)比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過(guò)程;學(xué)生經(jīng)歷由實(shí)際問(wèn)題引入數(shù)學(xué)問(wèn)題的過(guò)程,發(fā)展學(xué)生的抽象概括能力。

  情感態(tài)度與價(jià)值觀:

  通過(guò)對(duì)二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái),使他們體驗(yàn)到成功的樂(lè)趣.

  重點(diǎn)、難點(diǎn):重點(diǎn):

  合并被開(kāi)放數(shù)相同的同類(lèi)二次根式,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法。

  難點(diǎn):

  二次根式加減法的實(shí)際應(yīng)用。

  關(guān)鍵問(wèn)題 :

  了解同類(lèi)二次根式的概念,合并同類(lèi)二次根式,會(huì)進(jìn)行二次根式的加減法。

  教學(xué)方法:.

  1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問(wèn)題相結(jié)合,采用“問(wèn)題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

  2. 類(lèi)比法:由實(shí)際問(wèn)題導(dǎo)入二次根式加減運(yùn)算;類(lèi)比合并同類(lèi)項(xiàng)合并同類(lèi)二次根式。

  3.嘗試訓(xùn)練法:通過(guò)學(xué)生嘗試,教師針對(duì)個(gè)別問(wèn)題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果。

二次根式教案 篇7

  教學(xué)目標(biāo)

  1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡(jiǎn)含二次根式的式子;

  2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):含二次根式的式子的混合運(yùn)算.

  難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡(jiǎn)和計(jì)算含二次根式的式子.

  教學(xué)過(guò)程設(shè)計(jì)

  一、復(fù)習(xí)

  1.請(qǐng)同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來(lái),并說(shuō)明各 式成立的條件.

  指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡(jiǎn)二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來(lái).

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個(gè)二次根式相除,

  計(jì)算結(jié)果要把分母有理化.

  3.在二次根式的化簡(jiǎn)或計(jì)算中,還常用到以下兩個(gè)二次根式的關(guān)系式:

  4.在含有二次根式的式子的化簡(jiǎn)及求值等問(wèn)題中,常運(yùn)用三個(gè)可逆的式子:

  二、例題

  例1 x取什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:

  分析:

  (1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;

  (3)題是兩個(gè)二次根式的和, x的取值必須使兩個(gè)二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項(xiàng)式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零.

  x-2且x0.

  解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個(gè)二次根式的被開(kāi)方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡(jiǎn),化簡(jiǎn)中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

  解 因?yàn)?-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質(zhì)化簡(jiǎn)含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問(wèn):上面的代數(shù)式中的兩個(gè)二次根式的被開(kāi)方數(shù)的式子如何化為完全平方式?

  分析:先把第二個(gè)式子化簡(jiǎn),再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計(jì)算.

  注意:

  所以在化簡(jiǎn)過(guò)程中,

  例6

  分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹?jiǎn)捷.

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習(xí)

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計(jì)算:

  四、小結(jié)

  1.本節(jié)課復(fù)習(xí)的五個(gè)基本問(wèn)題是“二次根式”這一章的主要基礎(chǔ)知識(shí),同學(xué)們要深刻理解并牢固掌握.

  2.在一次根式的化簡(jiǎn)、計(jì)算及求值的'過(guò)程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開(kāi)方數(shù)為非負(fù)數(shù),以確定被開(kāi)方數(shù)中的字母或式子的取值范圍.

  3.運(yùn)用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運(yùn)算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件.

  4.通過(guò)例題的討論,要學(xué)會(huì)綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡(jiǎn)、計(jì)算及求值等問(wèn)題.

  五、作業(yè)

  1.x是什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

  2.把下列各式化成最簡(jiǎn)二次根式:

二次根式教案 篇8

  1.請(qǐng)同學(xué)們回憶(≥0,b≥0)是如何得到的?

  2.學(xué)生觀察下面的例子,并計(jì)算:

  由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:

  類(lèi)似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:

 。ā0,b0)

  使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過(guò)程.

  類(lèi)似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,

  請(qǐng)學(xué)生們思考為什么b的取值范圍變小了?

  與學(xué)生一起寫(xiě)清解題過(guò)程,提醒他們被開(kāi)方式一定要開(kāi)盡.

  對(duì)比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法

  增強(qiáng)學(xué)生的自信心,并從一開(kāi)始就使他們參與到推導(dǎo)過(guò)程中來(lái).

  對(duì)學(xué)生進(jìn)一步強(qiáng)化被開(kāi)方數(shù)的取值范圍,以及分母不能為零.

  強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).

  教學(xué)過(guò)程設(shè)計(jì)

  問(wèn)題與情境師生行為設(shè)計(jì)意圖

  活動(dòng)二自我檢測(cè)

  活動(dòng)三挑戰(zhàn)逆向思維

  把反過(guò)來(lái),就得到

  (≥0,b0)

  利用它就可以進(jìn)行二次根式的化簡(jiǎn).

  例2化簡(jiǎn):

 。1)

 。2)(b≥0).

  解:(1)(2)練習(xí)2化簡(jiǎn):

 。1)(2)活動(dòng)四談?wù)勀愕氖斋@

  1.商的算術(shù)平方根的.性質(zhì)(注意公式成立的條件).

  2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).

  找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.

  二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

  找學(xué)生口述解題過(guò)程,教師將過(guò)程寫(xiě)在黑板上.

  請(qǐng)學(xué)生仿照例題自己解決這兩道小題,組長(zhǎng)檢查本組的學(xué)習(xí)情況.

  請(qǐng)學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

  為了更快地發(fā)現(xiàn)學(xué)生的錯(cuò)誤之處,以便糾正.

  此處進(jìn)行簡(jiǎn)單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.

  讓學(xué)困生在自己做題時(shí)有一個(gè)參照.

  充分發(fā)揮組長(zhǎng)的作用,盡可能在課堂上將問(wèn)題解決.

二次根式教案 篇9

  教學(xué)目的

  1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;

  2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。

  教學(xué)重點(diǎn)

  最簡(jiǎn)二次根式的定義。

  教學(xué)難點(diǎn)

  一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。

  教學(xué)過(guò)程

  一、復(fù)習(xí)引入

  1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):

  2.引導(dǎo)學(xué)生觀察考慮:

  化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?

  化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。

  3.啟發(fā)學(xué)生回答:

  二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?

  二、講解新課

  1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:

  滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:

  (1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。

  最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的.形式。

  2.練習(xí):

  下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:

  3.例題:

  例1 把下列各式化成最簡(jiǎn)二次根式:

  例2 把下列各式化成最簡(jiǎn)二次根式:

  4.總結(jié)

  把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

  當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。

  三、鞏固練習(xí)

  1.把下列各式化成最簡(jiǎn)二次根式:

  2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。

  四、小結(jié)

  本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開(kāi)方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開(kāi)方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。

  五、布置作業(yè)

  下列各式化成最簡(jiǎn)二次根式: