ww亚洲ww亚在线观看,wwwxxxx日韩高清,真实14初次破初视频在线播放,五月丁香婷婷综合激情,日本熟妇丰满的大屁股,a级免费按摩黄片,黄色视频.wwww

《圓柱的體積》教學(xué)反思

時(shí)間:2025-04-25 10:02:56 教學(xué)反思 我要投稿

《圓柱的體積》教學(xué)反思【熱】

  身為一名到崗不久的老師,我們要在課堂教學(xué)中快速成長,我們可以把教學(xué)過程中的感悟記錄在教學(xué)反思中,寫教學(xué)反思需要注意哪些格式呢?下面是小編幫大家整理的《圓柱的體積》教學(xué)反思,希望對大家有所幫助。

《圓柱的體積》教學(xué)反思【熱】

《圓柱的體積》教學(xué)反思1

  這節(jié)課我采用新課程的教學(xué)理念,合理安排教學(xué)環(huán)節(jié),激發(fā)學(xué)生的思維,組織學(xué)生參與操作,通過觀察、交流,感悟知識(shí)間的聯(lián)系,從而獲取新知。我深知教學(xué)無止境,沒有最好只有更好,我要從成功中找不足。

  首先,復(fù)習(xí)內(nèi)容簡單明了,以舊引新。復(fù)習(xí)的知識(shí)點(diǎn)是對舊知的回顧,要求學(xué)生寫出長方體和正方體的體積計(jì)算公式,在對預(yù)習(xí)作業(yè)交流時(shí)我發(fā)現(xiàn)學(xué)生能比較順利和準(zhǔn)確的回答,這為新課的教學(xué)活動(dòng)不僅起了良好的開端,更重要的是為學(xué)生在課堂上再進(jìn)一步地、更深入地探索新知削弱了阻力,減輕了負(fù)擔(dān)。

  其次,引導(dǎo)學(xué)生大膽交流猜想和探索驗(yàn)證。我利用課件把等底等高的長方體、正方體和圓柱體圖形和問題呈現(xiàn)出來,讓學(xué)生觀察圖形思考問題并組織討論。在對如何驗(yàn)證讓學(xué)生作為重點(diǎn)交流。意圖是先讓學(xué)生明確兩點(diǎn)。第一點(diǎn)圓可以轉(zhuǎn)化成長方形,圓柱可以轉(zhuǎn)化長方體;第二點(diǎn)把圓柱的底面經(jīng)過圓心16等份,切開后可以拼成一個(gè)近似的長方體。由于學(xué)生課前做了充分的預(yù)習(xí)和課堂開始階段預(yù)習(xí)作業(yè)的交流,學(xué)生對如何驗(yàn)證的思維已經(jīng)初步形成。讓學(xué)生再次交流和匯報(bào),我發(fā)現(xiàn)學(xué)生都了解和掌握。此時(shí)我指名學(xué)生到講臺(tái)前利用教具說出操作方法,并進(jìn)行操作,讓全班同學(xué)觀察操作過程。通過學(xué)生的操作、觀察,學(xué)生得到體驗(yàn)和感悟,發(fā)現(xiàn)圓柱可以轉(zhuǎn)化成一個(gè)近似的長方體。

  再次,課件展示、構(gòu)建新知。讓學(xué)生觀看課件:是把圓柱的底面平均分成32份切開后拼成的長方體。我抓住時(shí)機(jī)問學(xué)生:如果把圓柱的底面平均分的份數(shù)越多,切開后拼成的物體的形狀就有什么變化?學(xué)生明確回答拼成的物體越來越接近長方體。接著我把圓柱體和轉(zhuǎn)化后的長方體圖象同時(shí)顯示出來,要求學(xué)生說出長方體的底面積和高與圓柱的底面積和高有什么關(guān)系,學(xué)生能清楚地表達(dá)出來。推導(dǎo)圓柱的體積計(jì)算公式的過程分為猜想、操作、發(fā)現(xiàn)、結(jié)論四個(gè)階段,學(xué)生經(jīng)歷這些教學(xué)活動(dòng),體驗(yàn)和感悟了轉(zhuǎn)化的'作用和價(jià)值,弄懂得了圓柱的體積計(jì)算公式的來龍去脈。

  最后,分層練習(xí),發(fā)散思維。在獲得圓柱的體積計(jì)算公式的成果之后,為了培養(yǎng)學(xué)生解題的靈活性,拓展知識(shí),培養(yǎng)學(xué)生發(fā)散思維的能力,注意分層練習(xí),我安排了練習(xí)題是有層次和梯度的。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積。解決生活中的問題中,我設(shè)計(jì)的習(xí)題激發(fā)學(xué)生思考的欲望,壓路機(jī)、鉛筆、柱子這些圓柱體,需要實(shí)際測量什么,才能進(jìn)一步求得圓柱的體積,孩子們大膽思考,結(jié)合生活實(shí)際找到了答案,體會(huì)到“生活中的數(shù)學(xué)”。在練習(xí)時(shí)我不斷巡視關(guān)注學(xué)生練習(xí)情況,鼓勵(lì)學(xué)生大膽展示,交流各自的想法和做法。對出現(xiàn)的錯(cuò)誤作為教師指導(dǎo)的課程資源,強(qiáng)化孩子對圓柱體積知識(shí)點(diǎn)的深化和理解。

《圓柱的體積》教學(xué)反思2

  在本節(jié)課的教學(xué)中,教師根據(jù)教學(xué)的需要,充分利用現(xiàn)實(shí)生活中的素材,把教材中有關(guān)圓柱的提積的應(yīng)用所呈現(xiàn)的內(nèi)容變?yōu)楝F(xiàn)實(shí)生活中的問題,變書本知識(shí)為生活中的知識(shí)。

  本節(jié)課中教師沒有過多地教學(xué)生,而讓學(xué)生回歸到生活原形中去,應(yīng)用所學(xué)的知識(shí)解決了生活中的實(shí)際問題,使本來很枯燥的圓柱的體積應(yīng)用的題材生活化,增加了學(xué)生的信息量,提高了學(xué)生體會(huì)數(shù)學(xué)奧秘的積極性。學(xué)生體會(huì)到了生活中處處有數(shù)學(xué),數(shù)學(xué)就在我們身邊,知識(shí)才是我們解決實(shí)際問題的“金鑰匙”。通過尋找這些信息背后的信息,學(xué)生掌握了知識(shí)、形成了技能。同時(shí)也感受到了數(shù)學(xué)應(yīng)用的廣泛性以及數(shù)學(xué)與生活的緊密聯(lián)系。

  但在本節(jié)課中也有不足的地方,如①由于中心問題空間較大,具有挑戰(zhàn)性,中下等學(xué)生自主探索有一定的難度;②實(shí)踐中,學(xué)生獨(dú)立思考和小組討論花時(shí)間太多,影響了后面的教學(xué),這都是以后在教學(xué)中應(yīng)注意的.問題。

  總之,隨著數(shù)學(xué)的發(fā)展,數(shù)學(xué)的應(yīng)用也越來越廣泛。作為教師的我們,應(yīng)該提供給學(xué)生充分的機(jī)會(huì),讓學(xué)生運(yùn)用已學(xué)過的數(shù)學(xué)知識(shí)解決問題,在問題的解決過程中,發(fā)展學(xué)生的思維能力,用數(shù)學(xué)的眼光去感知、去觀察、去應(yīng)用。

《圓柱的體積》教學(xué)反思3

  圓柱的體積教學(xué)反思

  在這節(jié)課學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個(gè)教具。為了讓學(xué)生充分體會(huì),我把操作的機(jī)會(huì)給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長方體的長相當(dāng)于圓柱的'哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生基本沒有親身參與操作,非常遺憾。但我使用了課件-----把圓柱體沿著它的直徑切成諾干等份,拼成一個(gè)近似的長方體,展示切拼過程.學(xué)生雖然沒有親身經(jīng)歷,但也一目了然.,學(xué)習(xí)效果還可以。

  圓柱的體積練習(xí)課教學(xué)反思

  本節(jié)的練習(xí),提高了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決身邊問題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識(shí)的特點(diǎn)。運(yùn)用已有的知識(shí)經(jīng)驗(yàn)解決新的問題,在新舊知識(shí)的聯(lián)系上,使學(xué)生想象合理、聯(lián)系有方。

《圓柱的體積》教學(xué)反思4

  今天上了《圓柱的體積》一課,覺得比以前上得輕松,回到辦公室細(xì)細(xì)品味上課的過程,頗有幾分感受:

  在本課中,當(dāng)學(xué)生面對新的問題情境—“圓柱的體積該怎么求?”時(shí),能從圓的面積公式的推導(dǎo),根據(jù)已有的知識(shí)作出 “轉(zhuǎn)化”的判斷。當(dāng)然,由于知識(shí)經(jīng)驗(yàn)的.不足,表達(dá)得不是很清晰。但學(xué)生的這些都是有價(jià)值的。這些“猜想”閃爍著學(xué)生智慧的火花,折射出學(xué)生的創(chuàng)造精神。在此基礎(chǔ)上,讓學(xué)生以小組合作方式,利用已切開的圓柱體教具進(jìn)行驗(yàn)證,在討論聲中,學(xué)生獲得了真知?梢姡處熞Wo(hù)學(xué)生的創(chuàng)造熱情并給以科學(xué)探究方法的引導(dǎo),以發(fā)展學(xué)生的創(chuàng)造性。在這點(diǎn)上,我對學(xué)生的探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學(xué)生的創(chuàng)造力是我們設(shè)計(jì)教法的前提。

  在引導(dǎo)學(xué)生解決“粉筆的體積”等這個(gè)問題時(shí),課堂上有學(xué)生把它當(dāng)作圓柱體積來求,提出:“誤差這么小,是可行的!倍夷俏粚W(xué)生要求的僅是一個(gè)大約的數(shù)值,所以用這種方法可以。但這種計(jì)算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說明,就會(huì)給學(xué)生造成“圓臺(tái)的體積可以用這兩種方法來計(jì)算”的錯(cuò)誤認(rèn)識(shí),對學(xué)生的后續(xù)學(xué)習(xí)會(huì)造成一些不利的影響。我就這個(gè)問題引導(dǎo)學(xué)生進(jìn)一步探索,使學(xué)生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時(shí)會(huì)行不通,懂得知識(shí)并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進(jìn)一步學(xué)習(xí)積累經(jīng)驗(yàn)。學(xué)生在探索過程中,雖不能很快獲得結(jié)論性的知識(shí),但卻嘗試了科學(xué)探究的方法,形成良好的思維品質(zhì),增進(jìn)了情感體驗(yàn)。這樣,既保護(hù)了學(xué)生的創(chuàng)造性,又保證了教學(xué)內(nèi)容的科學(xué)性,就學(xué)生的發(fā)展而言,誰能說讓學(xué)生經(jīng)歷這樣探究的過程,不也比獲得現(xiàn)成的結(jié)論更富有積極的意義?

《圓柱的體積》教學(xué)反思5

  本節(jié)課注重了數(shù)學(xué)思想方法和學(xué)習(xí)能力的培養(yǎng)。能力的發(fā)展決不等同于知識(shí)與技能的獲得。能力的形成是一個(gè)緩慢的`過程,有其自身的特點(diǎn)和規(guī)律,它不是學(xué)生“懂”了,也不是學(xué)生“會(huì)”了,而是學(xué)生自己“悟”出了道理、規(guī)律和思考方法等。本節(jié)課沿著“猜想-驗(yàn)證”的學(xué)習(xí)流程進(jìn)行,給學(xué)生提供較充分的探索交流的空間,組織、引導(dǎo)學(xué)生“經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程”,并把數(shù)學(xué)推理能力有機(jī)地融合在這樣的“過程”之中,有力地促使了學(xué)習(xí)改善學(xué)習(xí)方式。本課中學(xué)生“以舊推新”-大膽地進(jìn)行數(shù)學(xué)的猜想;“以新轉(zhuǎn)舊”-積極把新知識(shí)轉(zhuǎn)化為已能解決的舊問題;“新舊交融”-合理地把新知識(shí)納入到原有的認(rèn)識(shí)結(jié)構(gòu)中,教學(xué)活動(dòng)成了學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng)。

  整個(gè)教學(xué)過程是在“猜想-驗(yàn)證”的過程中進(jìn)行的,是讓學(xué)生在和已有知識(shí)經(jīng)驗(yàn)中體驗(yàn)和理解數(shù)學(xué),學(xué)生學(xué)會(huì)了思考、學(xué)會(huì)了解決問題的策略,學(xué)出了自信。

《圓柱的體積》教學(xué)反思6

  《圓柱的體積》不僅要讓學(xué)生掌握圓柱體積的計(jì)算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計(jì)算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:

 。1)圓柱的體積等于長方體和正方體的體積。

 。2)圓柱的體積也等于底面積乘高。

  猜測是否準(zhǔn)確呢?點(diǎn)燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗(yàn)證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個(gè)圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。我沒有否定她的回答,接著又讓學(xué)生動(dòng)手實(shí)踐操作,讓學(xué)生發(fā)現(xiàn)長方體與圓柱之間的聯(lián)系,利用圓的.周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動(dòng)的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。

  在本節(jié)課的教學(xué)過程中還存在諸多的問題。

  1、演示圓柱的體積的時(shí)候,因?yàn)閷W(xué)生手中沒有學(xué)具,教師教具的局限性,演示時(shí)后面的學(xué)生看不清楚。

  2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長方體的時(shí)候,應(yīng)多給后進(jìn)生留有觀察、討論的時(shí)間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時(shí)間,讓后進(jìn)生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進(jìn)步。

  3、在解決實(shí)際問題的時(shí)候,不僅要注重公式的應(yīng)用,還要注意計(jì)算能力的培養(yǎng)。

《圓柱的體積》教學(xué)反思7

  本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因?yàn)楣降耐茖?dǎo)過程是個(gè)難點(diǎn),因此在教學(xué)設(shè)計(jì)時(shí),我讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),幫助學(xué)生理解公式的來源,從而獲得知識(shí)。下面我來談?wù)勛约旱囊恍┓此肌?/p>

  1、導(dǎo)入時(shí),力求突破教材,有所創(chuàng)新

  圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計(jì)算”,再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會(huì)明顯不佳。于是我設(shè)計(jì)時(shí)在回憶了長方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時(shí)間的控制,不能花費(fèi)太多的時(shí)間。

  2、新課時(shí),要實(shí)現(xiàn)人人參與,主動(dòng)學(xué)習(xí)

  學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時(shí),因?yàn)閷W(xué)校沒有提供學(xué)具,所以我只能先讓學(xué)生展開空間想象,結(jié)合圓面積的推導(dǎo)過程,借助課件一一展示推導(dǎo)過程。讓學(xué)生觀察發(fā)現(xiàn)把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,圓柱體就轉(zhuǎn)化成一個(gè)近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗(yàn),也有了充分的思考空間。

  3、練習(xí)時(shí),形式多樣,層層遞進(jìn)

  例題的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的`題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,我在設(shè)計(jì)練習(xí)時(shí)考慮怎樣才能讓學(xué)生用最短的時(shí)間完成不同類型的題目。

 。1)、已知圓柱底面積(s)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=sh。

 。2)、已知圓柱底面半徑(r)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=πr2h。

 。3)、已知圓柱底面直徑(d)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(d/2) 2h。

 。4)、已知圓柱底面周長(c)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2) 2h。

 。5)、已知圓柱側(cè)面積(s側(cè))和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2) 2h。

  因?yàn)槭堑谝徽n時(shí)所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計(jì)算圓柱體積的方法。另外,還設(shè)計(jì)了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。不足之處

  本想給學(xué)生準(zhǔn)備學(xué)具,親自動(dòng)手操作圓柱體體積的推導(dǎo)過程,無奈學(xué)校沒有學(xué)具,所以只能讓孩子借助圓面積的推導(dǎo)過程展開想象,然后借助課件展示圓柱體積的推導(dǎo)過程,可能對一些學(xué)困生的理解還有困難。

《圓柱的體積》教學(xué)反思8

  一、讓操作更詳實(shí),留下思考的痕跡

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:動(dòng)手實(shí)踐、自主探索、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。組織學(xué)生在實(shí)踐操作中探究發(fā)現(xiàn)規(guī)律,可以充分調(diào)動(dòng)學(xué)生的各種感官,從感性到理性,從實(shí)踐到認(rèn)識(shí),從具體到抽象,引導(dǎo)學(xué)生積極動(dòng)手動(dòng)腦、概括分析、抽象推理等,這不僅有利于學(xué)生思維的發(fā)展,而且也可以加深學(xué)生對數(shù)學(xué)知識(shí)的理解和掌握。尤其是對于幾何知識(shí)的學(xué)習(xí),課堂教學(xué)中的動(dòng)手操作就顯得更加重要。

  在探索圓柱體積計(jì)算方法的時(shí)候,教師試圖讓學(xué)生結(jié)合圓面積計(jì)算的探索方法,能聯(lián)想到可以把,圓柱的體積轉(zhuǎn)化成已知的立體圖形的體積。但這種方法似乎在學(xué)生的印象中并不深刻,因此學(xué)生在探索的一開始,學(xué)生就遇到了思考的困惑,對他后面的探索造成了很大的影響。在教師的印象中圓面積的計(jì)算公式推導(dǎo)應(yīng)該是我們花了很多時(shí)間去讓學(xué)生操作的,但是操作的效果卻如此之差。我們不妨反問自己一下,究竟自己在教學(xué)的時(shí)候是否用好了學(xué)生的操作,讓學(xué)生對操作的過程有深刻的體會(huì)與認(rèn)識(shí),在操作中是否激起了學(xué)生的思考。

  當(dāng)學(xué)生想到了探索方法后,卻因?yàn)橐恍┛陀^的原因,沒有能夠讓學(xué)生親自去套作一番,光是看課件、看其他同學(xué)的操作,對于大部分學(xué)生來說,印象是不夠深刻的,體會(huì)也是不到位的。畢竟這部分內(nèi)容的學(xué)習(xí)對與學(xué)生來說也是有一定困難的,雖然是六年級的`同學(xué),但他們的空間想象能力還是不夠的,需要實(shí)打?qū)嵉牟僮,讓他們有個(gè)直觀的認(rèn)識(shí)。

  所以我認(rèn)為我們的課堂上應(yīng)放手讓學(xué)生去操作,用直觀的操作,留下自己思考的痕跡,為進(jìn)一步探索知識(shí)做好準(zhǔn)備。

  二、讓觀察更細(xì)致,尋找知識(shí)的聯(lián)系

  數(shù)學(xué)觀察力,是新課標(biāo)中對提出學(xué)生應(yīng)必備的一種重要數(shù)學(xué)能力。學(xué)生在操作的基礎(chǔ)上要學(xué)會(huì)觀察,挖掘知識(shí)之間的聯(lián)系,真正體現(xiàn)操作的價(jià)值。

  在圓柱的體積的教學(xué)中,教師讓學(xué)生去發(fā)現(xiàn)圓柱體與通過切割后形成的長方體之間的聯(lián)系時(shí),不少學(xué)生都一時(shí)摸不著頭腦。這時(shí),教師不妨給孩子一些觀察的提示,如:“拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?”“拼成的長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?”通過學(xué)生直觀的觀察,讓學(xué)生去挖掘數(shù)學(xué)本質(zhì)上的一些聯(lián)系,讓學(xué)生在知識(shí)的探索過程中有一個(gè)完成的體驗(yàn)過程,也對所學(xué)的知識(shí)有一個(gè)更好的理解。

  觀察是智慧的源泉,讓學(xué)生學(xué)會(huì)從變化的角度去觀察,發(fā)現(xiàn)知識(shí)之間的聯(lián)系,這也是一種令學(xué)生終身受益的學(xué)習(xí)方法。

  三、讓探索更深入,渴求方法的掌握

  通過操作與觀察,可以說學(xué)生積累了一定的認(rèn)知經(jīng)驗(yàn),這種經(jīng)驗(yàn)我想不應(yīng)該只停留在一節(jié)課、一個(gè)內(nèi)容的學(xué)習(xí)中,可以延伸到很多知識(shí)的學(xué)習(xí)中去,從而形成一定的學(xué)習(xí)方法。就如在圓柱的體積的學(xué)習(xí)中,圓柱體轉(zhuǎn)化成已經(jīng)學(xué)過的長方體的體積來探究的這種方法在之前學(xué)生已經(jīng)接觸過,如:圓面積的計(jì)算方法、平行四邊形的面積計(jì)算方法,我們都是通過將未知的圖形轉(zhuǎn)化成已知圖形來探索面積計(jì)算的方法。如果我們在教學(xué)的過程中能夠很好地重視學(xué)生的操作經(jīng)驗(yàn)積累,并形成一定的方法,相信學(xué)生在溝通新知和舊知之間的聯(lián)系時(shí)會(huì)更加的自然而然,也能順利的實(shí)現(xiàn)知識(shí)的正遷移。

  因此,在數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該讓學(xué)生的探索過程更加的深入,形成一定的學(xué)習(xí)方法,為今后的學(xué)習(xí)積累知識(shí)經(jīng)驗(yàn)的同時(shí)

《圓柱的體積》教學(xué)反思9

  圓柱的體積是幾何知識(shí)的綜合運(yùn)用,它是在學(xué)生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識(shí)的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂趣。從本節(jié)課教學(xué)目標(biāo)的達(dá)成來看,較好地體現(xiàn)了以下幾方面:

  一、注重知識(shí)之間的內(nèi)在聯(lián)系。

  圓柱的體積的導(dǎo)入,先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計(jì)算”,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的,并讓學(xué)生建立起更深層的空間幾何概念。

  二、引導(dǎo)學(xué)生經(jīng)歷知識(shí)探究的全過程。

  數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實(shí)驗(yàn)、模擬、推斷等探索性與挑戰(zhàn)性活動(dòng),因此,動(dòng)手實(shí)踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨(dú)立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把柱轉(zhuǎn)化成長方體。那么怎樣來切割呢?此時(shí)利用生活中的“蘿卜”引導(dǎo)學(xué)生思考。同學(xué)們有了圓面積計(jì)算公式推導(dǎo)的經(jīng)驗(yàn),經(jīng)過思考得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進(jìn)行了動(dòng)手操作,拼成了一個(gè)近似的長方體。并利用多媒體動(dòng)畫演示,重現(xiàn)推導(dǎo)過程加深學(xué)生印象。同學(xué)們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個(gè)過程,學(xué)生從形象具體的知識(shí)形成過程中,認(rèn)識(shí)得以升華(較抽象的認(rèn)識(shí)——公式)。

  三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。

  “學(xué)會(huì)學(xué)習(xí)”是對學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識(shí),更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗(yàn)證”的`學(xué)法指導(dǎo),貫穿于整個(gè)學(xué)習(xí)過程,使學(xué)生學(xué)得主動(dòng)有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗(yàn)轉(zhuǎn)化的過程,驗(yàn)證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會(huì)到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。

  本課中還存在很多不足在例如探究過程中沒有充分的給予學(xué)生說一說、指一指的時(shí)間,在引導(dǎo)學(xué)生思考已知圓柱底面半徑(r)和高(h)、已知圓柱底面直徑(d)和高(h)、已知圓柱底面周長(c)和高(h)三種情況時(shí),教師引導(dǎo)過多,應(yīng)給予學(xué)生更充分的思考空間,讓其考慮如果沒有底面積,知道哪個(gè)條件也可以求圓柱體積。最后,在練習(xí)中缺少反饋,學(xué)生做完練習(xí)后,應(yīng)及時(shí)做到直觀反饋,總結(jié)優(yōu)缺點(diǎn),指導(dǎo)學(xué)生做題。

《圓柱的體積》教學(xué)反思10

  “圓柱體積計(jì)算公式的推導(dǎo)”是在同學(xué)已經(jīng)學(xué)習(xí)了“圓的面積計(jì)算”、“長方體的體積”、“圓柱的認(rèn)識(shí)”等相關(guān)的形體知識(shí)的基礎(chǔ)上教學(xué)的。同時(shí)又是為同學(xué)今后進(jìn)一步學(xué)習(xí)其他形體知識(shí)做好充沛準(zhǔn)備的一堂課。

  課始,教師創(chuàng)設(shè)問題情境,不時(shí)地引導(dǎo)同學(xué)運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,探索和解決實(shí)際問題,并制造認(rèn)知抵觸,形成了“任務(wù)驅(qū)動(dòng)”的探究氛圍。

  展開局部,教師為同學(xué)提供了動(dòng)手操作、觀察以和交流討論的平臺(tái),讓同學(xué)在體驗(yàn)和探索空間與圖形的過程中不時(shí)積累幾何知識(shí),以協(xié)助同學(xué)理解實(shí)際的三維世界,逐步發(fā)展其空間觀念。

  練習(xí)布置注重密切聯(lián)系生活實(shí)際,讓同學(xué)運(yùn)用自身剛推導(dǎo)的圓柱體積計(jì)算公式解決引入環(huán)節(jié)中的兩個(gè)問題,使其認(rèn)識(shí)數(shù)學(xué)的價(jià)值,切實(shí)體驗(yàn)到數(shù)學(xué)存在于自身的身邊,數(shù)學(xué)對于了解周圍世界和解決實(shí)際問題是非常有作用的.。

  教師無論是導(dǎo)入環(huán)節(jié),還是新課局部都恰當(dāng)?shù)匾龑?dǎo)同學(xué)進(jìn)行知識(shí)遷移,充沛地讓同學(xué)感受和體驗(yàn)“轉(zhuǎn)化”這一解決數(shù)學(xué)問題重要的思想方法。同時(shí),還合理地運(yùn)用了多媒體技術(shù),形象生動(dòng)地展示了“分成的扇形越多,拼成的立體圖形就越接近于長方體”,有機(jī)地滲透了極限的初步思想。

《圓柱的體積》教學(xué)反思11

  案例背景:

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)是人們對客觀世界定性把握和定量刻畫、逐漸抽象概括形成方法和理論并進(jìn)行廣泛應(yīng)用的過程。這一描述,明確了小學(xué)數(shù)學(xué)的內(nèi)涵,即數(shù)學(xué)學(xué)習(xí)是一個(gè)過程。近日,在市小學(xué)數(shù)學(xué)名師課堂教學(xué)展示中,天福小學(xué)的劉愛芳校長執(zhí)教的《圓柱的體積》一課,使我對個(gè)人的專業(yè)素養(yǎng)和課堂的設(shè)計(jì)內(nèi)涵,都有了很深的觸動(dòng)。

  案例描述:

  片段一:

  師:同學(xué)們,往這里看,今天老師帶來了三件物體:玻璃杯、橡皮泥、金屬零件。這三件物體有什么共同點(diǎn)?

  生:都是圓柱。

  師:圓柱形的物體生活中很多,以這三樣為例,你能提出哪些數(shù)學(xué)問題?

  生1:水杯的容積是多少?

  生2:水杯的表面積是多少?

  生3:水杯的體積是多少?

  師:這三個(gè)問題很好,我們記下一個(gè)。

  師板書,水杯容積

  生繼續(xù)提出關(guān)于橡皮泥和金屬容器的體積的問題,師板書:橡皮泥體積,金屬零件體積。

  師:關(guān)于表面積的問題前面我們已經(jīng)研究過,這節(jié)課我們來研究圓柱體積的問題。

  師板書:圓柱體積

  師:以你現(xiàn)在的知識(shí)儲(chǔ)備,你能解決哪個(gè)問題?

  生:水杯的容積

  師:怎樣求?

  生:可以把水杯的裝滿水,倒進(jìn)一個(gè)長方體的容器中,計(jì)算出長方體容器中水的體積,也就求出了水杯的容積。

  師:瞧,“裝滿水”,“滿”這個(gè)字用的多好,把水杯中的水倒進(jìn)長方體容器中,從而求出水的體積。在這個(gè)過程中,運(yùn)用了一種重要的數(shù)學(xué)思想方法----轉(zhuǎn)化。

  師板書:倒---長方體,轉(zhuǎn)化。

  師:在轉(zhuǎn)化過程中,水的什么變了?什么沒變?

  生:水的形狀變了,體積沒變。

  師:水杯的容積解決了,橡皮泥的體積呢?金屬零件的體積呢?

  師:根據(jù)學(xué)生回答分別板書:捏---正方體,浸----長方體。

  師:剛才我們根據(jù)這三個(gè)物體的共同特點(diǎn),通過轉(zhuǎn)化,把它們轉(zhuǎn)化成我們以前學(xué)過的長方體或正方體的體積。是不是通過這三個(gè)方法,就可以解決所有的圓柱的體積的問題?

  生:不能。

  師:為什么?

  生交流,得知物體很大時(shí),沒法進(jìn)行轉(zhuǎn)化。

  師:因此,我們需要尋找一種通用的方法,你想到了什么方法?

  生:計(jì)算。

  師:圓柱體體積與什么有關(guān)?猜想一下怎樣計(jì)算?

  ……

  片段二:

  師:回顧這節(jié)課的學(xué)習(xí)過程,你認(rèn)為你最有收獲的是什么?

  師:前面大家根據(jù)長方體和正方體的體積公式猜測出圓柱的體積公式也是底面積×高,通過驗(yàn)證得知大家的猜測是正確的。

  師:這三個(gè)立體圖形有什么共同點(diǎn)?

  師:像這樣的形體在數(shù)學(xué)上叫做直柱體。

  課件出示:長方體、正方體、圓柱及它們的體積公式都是底面積×高。

  師:生活中的直柱體還有哪些?

  師:它們的形體是否也是底面積×高?有興趣的同學(xué)可以課后研究。

  案例反思:

  片段一的教學(xué)中,教師出示了三樣精心準(zhǔn)備的物體----玻璃杯、橡皮泥、金屬零件(都是圓柱體),在學(xué)生圍繞這三種物體提出數(shù)學(xué)問題后,教師并沒有直接引導(dǎo)學(xué)生去探求如何計(jì)算圓柱體的體積,而是通過“以你現(xiàn)在的知識(shí)儲(chǔ)備,你能解決哪個(gè)問題?”“在轉(zhuǎn)化過程中,水的什么變了?什么沒變?”“瞧,‘裝滿水’,‘滿’這個(gè)字用的多好,把水杯中的水倒進(jìn)長方體容器中,從而求出水的體積。在這個(gè)過程中,運(yùn)用了一種重要的數(shù)學(xué)思想方法----轉(zhuǎn)化!薄八娜莘e解決了,橡皮泥的體積呢?金屬零件的體積呢?”這些引導(dǎo)性語言,使學(xué)生明白有些物體的體積可以分別通過倒、捏、浸轉(zhuǎn)化成長方體或正方體的體積來解決,“轉(zhuǎn)化”的提出為學(xué)生后面構(gòu)建數(shù)學(xué)模型,探究圓柱體積公式奠定了基礎(chǔ)。緊接著“是不是通過這三個(gè)方法,就可以解決所有的.圓柱的體積的問題?”這個(gè)問題,點(diǎn)燃了學(xué)生的探究欲望,這是這節(jié)課成功的起點(diǎn),通過極限思想的滲透,使學(xué)生體會(huì)到了探究圓柱體積的計(jì)算方法的必要性。

  片段二的教學(xué)中,教師在引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)反思的基礎(chǔ)上,進(jìn)行了拓展延伸。通過對長方體、正方體、圓柱體積公式的歸納匯總,引出直柱體的概念,學(xué)生進(jìn)行了對直柱體表象的交流。此時(shí),學(xué)生的探究欲望、學(xué)習(xí)激情,并沒有隨著課的尾聲而有所減弱,而是探究熱情再一次被點(diǎn)燃,孩子們帶著強(qiáng)烈的研究熱情結(jié)束了本節(jié)課的學(xué)習(xí)。

  教材是一種重要的課程資源,對于學(xué)校和教師來說,課程實(shí)施更多地應(yīng)該是如何更好地“用教材”,而不是簡單地“教教材”。我們在用教材時(shí)不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實(shí)際的“跳板”。因此,教學(xué)時(shí),我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實(shí)際,研究學(xué)生學(xué)習(xí)起點(diǎn),讓學(xué)生親歷完整的數(shù)學(xué)學(xué)習(xí)過程,觸摸數(shù)學(xué)鮮活生動(dòng)的生命脈息,體會(huì)到知識(shí)產(chǎn)生過程中的前因和后果,從而進(jìn)行有效的數(shù)學(xué)思考。

《圓柱的體積》教學(xué)反思12

  在教學(xué)圓柱的體積時(shí),我采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí)。通過這節(jié)

  課的教學(xué),我覺得有以下幾個(gè)方面值得探討:

  一、聯(lián)系舊知,導(dǎo)入新知。

  圓柱的體積的導(dǎo)入,在回憶了長方體、正方體體積計(jì)算方法,并強(qiáng)調(diào)長方體、正方體的體積都可以用底面積乘高,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學(xué)過的圖形呢?”激發(fā)學(xué)生好奇心,獨(dú)立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導(dǎo)入新知,思維過度自然,易接受新知。

  二、動(dòng)手操作,探索新知。

  學(xué)生在探究新知時(shí),教師要給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),學(xué)生親身參與操作,先用小刀把一塊月餅切成一個(gè)圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,圓柱體就轉(zhuǎn)化成一個(gè)近似的長方體。找一找:這個(gè)長方體的長相當(dāng)于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的`體積就是長方體的體積,從而推導(dǎo)出圓柱體積的計(jì)算公式。

  三、課件展示,加深理解。

  為了直觀、形象,讓學(xué)生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學(xué)生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導(dǎo)圓柱體積公式的過程中,要求學(xué)生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會(huì)有什么變化?”學(xué)生雖然能說出“拼成的物體越來越接近長方體。” 但是,到底拼成的圖形怎樣更接近長方體?演示動(dòng)畫后,學(xué)生不僅對這個(gè)切拼過程一目了然,同時(shí)又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。

  四、分層練習(xí),發(fā)散思維。

  為了培養(yǎng)學(xué)生解題的靈活性,進(jìn)行分層練習(xí),拓展知識(shí),發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。

  但是不成功的地方也有,如學(xué)生在操作時(shí)有些學(xué)生拼的不是長方體,而是其他的形狀,這里由于是上公開課的原因就沒有有針對性的講解,只做到了多數(shù)學(xué)生的指導(dǎo)而沒有做到面向全體學(xué)生,這點(diǎn)我覺得在課堂上很難做到。

  總之,通過這次的國培學(xué)習(xí),使我的思想認(rèn)識(shí)和課堂技能都有了新的認(rèn)識(shí),感謝國培!

  教材作為教學(xué)的憑借與依據(jù),只不過是編者對學(xué)科知識(shí)、國家要求與學(xué)生進(jìn)行整和思考的結(jié)晶。但由于受時(shí)間與地域的影響,我們在執(zhí)行教材時(shí)不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實(shí)際的“跳板”。因此,教學(xué)時(shí),我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實(shí)際,創(chuàng)造性地利用教材。

《圓柱的體積》教學(xué)反思13

  “圓柱體積計(jì)算公式的推導(dǎo)”是在學(xué)生已經(jīng)學(xué)習(xí)了“圓的面積計(jì)算”、“長方體的體積”、“圓柱的認(rèn)識(shí)”等相關(guān)的形體知識(shí)的基礎(chǔ)上教學(xué)的。同時(shí)又是為學(xué)生今后進(jìn)一步學(xué)習(xí)其他形體知識(shí)做好充分準(zhǔn)備的一堂課。

  課始,教師創(chuàng)設(shè)問題情境,不斷地引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,探索和解決實(shí)際問題,并制造認(rèn)知沖突,形成了“任務(wù)驅(qū)動(dòng)”的探究氛圍。

  展開部分,教師為學(xué)生提供了動(dòng)手操作、觀察以及交流討論的平臺(tái),讓學(xué)生在體驗(yàn)和探索空間與圖形的過程中不斷積累幾何知識(shí),以幫助學(xué)生理解現(xiàn)實(shí)的三維世界,逐步發(fā)展其空間觀念。

  練習(xí)安排注重密切聯(lián)系生活實(shí)際,讓學(xué)生運(yùn)用自己剛推導(dǎo)的圓柱體積計(jì)算公式解決引入環(huán)節(jié)中的兩個(gè)問題,使其認(rèn)識(shí)數(shù)學(xué)的價(jià)值,切實(shí)體驗(yàn)到數(shù)學(xué)存在于自己的身邊,數(shù)學(xué)對于了解周圍世界和解決實(shí)際問題是非常有作用的'。

  教師無論是導(dǎo)入環(huán)節(jié),還是新課部分都恰當(dāng)?shù)匾龑?dǎo)學(xué)生進(jìn)行知識(shí)遷移,充分地讓學(xué)生感受和體驗(yàn)“轉(zhuǎn)化”這一解決數(shù)學(xué)問題重要的思想方法。同時(shí),還合理地運(yùn)用了多媒體技術(shù),形象生動(dòng)地展示了“分成的扇形越多,拼成的立體圖形就越接近于長方體”,有機(jī)地滲透了極限的初步思想。

《圓柱的體積》教學(xué)反思14

  本節(jié)的教學(xué)重難點(diǎn)是:

  1、探索并掌握圓柱體積公式,能計(jì)算圓柱的體積。

  2、在探索圓柱體積的過程中,進(jìn)一步體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。

  教學(xué)方法:我利用課件演示和實(shí)物演示來解決。讓學(xué)生學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想。

  成功之處:

  1、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;

  2、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動(dòng)多種感觀參與學(xué)習(xí);

  3、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的`主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識(shí)的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果。

  不足之處:

  1、個(gè)別學(xué)生還是對公式不會(huì)靈活應(yīng)用。

  2、練習(xí)題有些多,應(yīng)選擇一些有代表性的題,這樣小測驗(yàn)就能有充足的時(shí)間了。

  3、關(guān)注學(xué)生的有些少,尤其是應(yīng)關(guān)注做錯(cuò)的學(xué)生,應(yīng)知道為什么錯(cuò),及時(shí)在課堂評價(jià)出結(jié)果會(huì)更好。

  4、老師講得多,應(yīng)放手讓學(xué)生自己觀察自己處理自己總結(jié),會(huì)更好。

《圓柱的體積》教學(xué)反思15

  學(xué)生進(jìn)行圓柱體積公式探究時(shí),由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個(gè)教具。為了讓學(xué)生充分體會(huì),我把操作的機(jī)會(huì)給了個(gè)別學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的`份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,從而推導(dǎo)出圓柱體積的計(jì)算公式。

  非常遺憾的是學(xué)生基本沒有親身參與操作,。但我使用了課件-----把圓柱體沿著它的直徑切成諾干等份,拼成一個(gè)近似的長方體 ,展示切拼過程.學(xué)生雖然沒有親身經(jīng)歷,但也一目了然.

【《圓柱的體積》教學(xué)反思】相關(guān)文章:

圓柱的體積教學(xué)反思06-16

2023年《圓柱的體積》教學(xué)反思11-11

《圓柱體積》教學(xué)反思09-27

《圓柱的體積》教學(xué)反思(精選20篇)03-22

《圓柱體積》教學(xué)反思06-24

圓柱體積的教學(xué)反思06-08

圓柱的體積教學(xué)反思(精選23篇)10-08

圓柱體積的教學(xué)反思[推薦]06-23

圓柱體積的教學(xué)反思(通用17篇)06-08

《圓柱的體積》教案07-26