ww亚洲ww亚在线观看,wwwxxxx日韩高清,真实14初次破初视频在线播放,五月丁香婷婷综合激情,日本熟妇丰满的大屁股,a级免费按摩黄片,黄色视频.wwww

《比例的意義》教案

時間:2024-09-11 02:43:47 松濤 教案 我要投稿

《比例的意義》教案(精選22篇)

  作為一位優(yōu)秀的人民教師,往往需要進行教案編寫工作,借助教案可以有效提升自己的教學能力。我們該怎么去寫教案呢?下面是小編精心整理的《比例的意義》教案,希望能夠幫助到大家。

《比例的意義》教案(精選22篇)

  《比例的意義》教案 篇1

  教學內(nèi)容:教科書第9—10頁比例的意義和基本性質(zhì).練習四的第1—3題。

  教學目的:使學生理解比例的意義和基本性質(zhì)。

  教學過程():

  一、教學比例的意義

  1.復(fù)習。

  (1)教師:請同學們回憶一下上學期我們學過的比的知識.誰能說說什么叫做比?并舉例說明什么是比的前項、后項和比值。教師把學生舉的例子板書出來,并注明比的各部分的名稱。

  (2)教師:我們知道了比的前后項相除所得的商叫做比值,你們會求比值嗎?

  教師板書出下面幾組比,讓學生求出它們的比值。

  12:16 :1 4·5:2.7 10:6

  學生求出各比的比值后,再提

  “請同學們觀察一下,哪兩個比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)

  教師說明:因為這兩個比的比值相等,所以這兩個比也是相等的,我們把它們用等號連起來。(板書:4.5:2.7=10:6)像這樣表示兩個比相等的式子叫做什么呢?

  這就是這節(jié)課我們要學習的內(nèi)容。(板書課題:比例的意義)

  2.教學比例的意義。

  (1)出示例1:“一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米!敝该麑W生讀題。

  教師:這道題涉及到時間和路程兩個量的關(guān)系,我們用表格把它們表示出來。表格的第一欄表示時間,單位“時”,第二欄表示路程,單位“千米”。這輛汽車第一次2小時行駛多少千米?第二次5小時行駛多少千米?(邊問邊填寫表格。)

  “你能根據(jù)這個表,分別寫出第一、二次所行駛的路程和時間的比嗎?”教師根據(jù)學生的回答。

  板書:第一次所行駛的路程和時間的比是80:2

  第二次所行駛的路程和時間的比是200:5

  然后讓學生算出這兩個比的比值。指名學生回答,教師板書:80:2=40, 200:5=40。讓學生觀察這兩個比的比值。再提問:

  “你們發(fā)現(xiàn)了什么?”(這兩個比的比值都是40。)

  “所以這兩個比怎么樣?”(這兩個比相等。)

  教師說明:因為這兩個比相等,所以可以把它們用等號連起來。(板書:80:2=200:5或 = )像這樣(指著這個式子和復(fù)習題的式子4. 5:2.7=10:6)表示兩個比相等的`式子叫做比例。

  指著比例式80:2=200:5,提問:

  “誰能說說什么叫做比例?”引導學生觀察是表示兩個比相等。然后板書:表示兩個比相等的式子叫做比例。并讓學生齊讀一遍。

  “從比例的意義我們可以知道.比例是由幾個比組成的?這兩個比必須具備什么條件:因此判斷兩個比能不能組成比例,關(guān)鍵是看什么?如果不能一眼看出兩個比是不是相等的,怎么辦?”

  根據(jù)學生的回答,教師小結(jié):通過上面的學習,我們知道了比例是由兩個相等的 比組成的。在判斷兩個比能不能組成比例時,關(guān)鍵是看這兩個比是不是相等。如果不能一限看出兩個比是不是相等?可以先分別把兩個比化簡以后再看。例如判斷10;12和35:1:這兩個比能不能組成比例,先要算出10:12= ,35:42= ,所以10:12=35:42:(以上舉例邊說邊板書。)

  (2)比較“比”和“比例”兩個概念。

  教師:上學期我們學習了“比”,現(xiàn)在又知道了“比例”的意義,那么“比”和“比例”有什么區(qū)別呢?

  引導學生從意義上、項數(shù)上進行對比,最后教師歸納:比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。

  (3)鞏固練習。

  ①用手勢判斷下面卡片上的兩個比能不能組成比例。(能,就用張開拇指和食指表 示;不能就用兩手的食指交叉表示。)

  6:3和12:6 35:7和45:9

  20:5和.16:8 0.8:0.4和 : :

  學生判斷后,指名說出判斷的根據(jù)。

 、谧龅10頁的“做一做”。

  讓學生看書,不抄題,直接把能組成比例的兩個比寫在練習本上,教師邊巡視邊批改,對做得不對的,讓他們說說是怎樣做的,看看自己做得對不對。

 、劢o出2、3、4、6四個數(shù),讓學生組成不同的比例(不要求舉全)。

 、茏鼍毩曀牡牡3題。

  對于能組成比例的四個數(shù),把能組成的比例寫出來:組成的比例只要能成立就可以。

  第4小題,給出的四個數(shù)都是分數(shù),在寫比例式時,也要讓學生寫成分數(shù)形式。

  二、教學比例的基本性質(zhì)

  1.教學比例各部分的名稱。

  教師:同學們能正確地判斷兩個比能不能組成比例了,那么比例各部分的名稱是什么?請同學們翻開教科書第10頁看第6行到9行?纯词裁唇斜壤捻、外項、內(nèi)項。(學生看書時,教師板書:80:2=200:5)

  指名讓學生指出板書出的比例的外項、內(nèi)項。隨著學生的回答教師接著板書如下:

  80 :2=:200 :5

  內(nèi)項

  外項

  2.教學比例的基本性質(zhì)。

  教師:我們知道了比例各部分的名稱,那么比例有什么性質(zhì)呢?現(xiàn)在我們就來研究。(在比例的意義后面板書:比例的基本性質(zhì))請同學們分別計算出這個比例中兩個內(nèi)項的積和兩個外項的積。教師板書:

  兩個外項的積是80×5=400

  兩個內(nèi)項的積是2×200=400

  “你發(fā)現(xiàn)了什么?”(兩個外項的積等于兩個內(nèi)項的積。)板書:80×5=2×20“是不是所有的比例式都是這樣的呢?”讓學生分組計算前面判斷過的比例式。

  “通過計算,大家發(fā)現(xiàn)所有的比例式都有這個共同的規(guī)律。誰能用一句話把這個規(guī)律說出來?”可多讓一些學生說,說得不完整也沒關(guān)系.讓后說的同學在先說的同學的基礎(chǔ)上說得更完整。

  最后教師歸納并板書出:在比例里.兩個外項的積等于兩個內(nèi)項的積。并說明這叫做比例的基本性質(zhì)。

  “如果把比例寫成分數(shù)形式,比例的基本性質(zhì)又是怎樣的呢?”(指著80;2=200:5)教師邊問邊改寫成: =

  “這個比例的外項是哪兩個數(shù)呢?內(nèi)項呢?”

  “因為兩個內(nèi)項的積等于兩個外項的積,所以,當比例寫成分數(shù)的形式.等號兩 端的分子和分母分別交叉相乘的積怎么樣?”邊問邊畫出交叉線,如: 學生回答后,教師強調(diào):如果把比例寫成分數(shù)形式,比例的基本性質(zhì)就是等號兩端分子和分母分別交叉相乘,積相等。板書: = 80×5=2×200

  3.鞏固練習。

  教師:前面要判斷兩個比是不是成比例,我們是通過計算它們的比值來判斷的。學過比例的基本性質(zhì)以后,也可以應(yīng)用比例的基本性質(zhì)來判斷兩個比能不能成比例。

  (1)應(yīng)用比例的基本性質(zhì)判斷3:4和6:8能不能組成比例。

  教師:我們可以這樣想:先假設(shè)3:4和6:8可以組成比例。再算出兩個外項的積(板書:兩個外項的積:3×8=:1)和兩個內(nèi)項的積(板書:兩個內(nèi)項的積:4×6=24)。因為3×8=4×6(板書出來).也就是說兩個外項的積等于兩個內(nèi)項的積,所以

  3:4和6:8可以組成比例。(邊說邊板書:3:4=6:8)

  (2)做第11頁“做一做”的第1題。

  三、小結(jié)

  教師:通過這節(jié)課,我們學到了什么知識?什么是比例?比例的基本性質(zhì)是什么?應(yīng)用比例的基本性質(zhì)可以做什么?

  四、作業(yè)

  練習四的第2題。

  《比例的意義》教案 篇2

  教學目標:

  1、使學生理解和掌握比例的意義和基本性質(zhì),認識比例各部分名稱,知道比和比例的區(qū)別,能應(yīng)用比例的意義和比例的基本性質(zhì)判斷兩個比能否組成比例。

  2、激發(fā)學生的學習興趣,培養(yǎng)學生初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生思維。

  教學重點:

  理解比例的意義基本性質(zhì)。

  教學難點:

  應(yīng)用比例的意義和性質(zhì)判斷兩個比是否成比例。

  教學過程

  一、導入新課

  1、什么叫比?

  2、求出下面各比的比值(小黑板)

  12:16 1/4:1/3 和9:12 4.5:2.7 10:6

  二、教學新課

  1、教學比例的意義

 。1)出示例1:同學們能寫出多少個有意義的比?觀察這些比,哪此能用等號連接?把能用等號連接的比用等號連接起來。這些式子都是比例,你能用自己的語言說一說什么是比例嗎?

 。2)歸納比例的意義

 。3)2:5和80:200能組成比例嗎?你是怎樣判斷的?

 。4)完成第45頁“做一做”

  2、教學比例的基本性質(zhì)

  (1)在一個比例里,有四個數(shù),這四個數(shù)分別叫什么名字?

 。2)請同們分別找出80:2=200:5和2分之80=5分之200的內(nèi)項和外項。

 。3)你們?nèi)我庹乙粋比例,把它們的內(nèi)項和外項分別乘起來,雙可以發(fā)現(xiàn)什么?

  (4)指導學生歸納后,在比例里,兩個外項的積等于兩個內(nèi)項的積。這就是比例的基本性質(zhì)。

 。5)指導學生完成第一46頁“做一做”第1題。

  三、鞏固練習

  四、課堂小結(jié)

  這節(jié)課你學到了哪些知識?

  創(chuàng)意作業(yè):

  有一房間,窗子的長是6分米,寬是4分米;門的長和寬分別是21分米和14分米,你能用已知的四個數(shù)組成多少個比例?比一比哪個同學組成的多。

  x

  教學內(nèi)容:

  比例的意義和基本性質(zhì) (省義務(wù)教材第十二冊)

  教學目標:

  1、理解和掌握比例的意義和基本性質(zhì),認識比例的各部分的名稱,體會數(shù)學的規(guī)律美。

  2、利用比例知識解決實際問題。

  3、培養(yǎng)學生自主參與的意識、主動探究的精神,激發(fā)學生的審美愉悅。培養(yǎng)學生進行初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生思維。

  教學過程:

  一、 談話導入,創(chuàng)設(shè)情境:

  出示CAI課件(一張微型照片)。你能看出這是杭州哪一個景點的照片?的確,照片太小了,那現(xiàn)在老師將這張照片按一定比例放大一些,。由此出現(xiàn)一張平湖秋月的風景照!菊T發(fā)審美注意】

  我們的祖國方圓960萬平方公里,幅員遼闊卻能在一張小小的地圖上清晰可見各地位置。建筑設(shè)計師可將濱江四區(qū)的設(shè)計構(gòu)想展示在一張紙上。這些,都要用到比例的知識,我們今天就來學習有關(guān)比例的一些知識。

  二、 自主探究,學習新知

 。ㄒ唬 教學比例的意義

  1、 8厘米

  出示

  6厘米

  4厘米

  3厘米

  (1)根據(jù)表中給出的數(shù)量寫出有意義的比。

 。2)哪些比是相關(guān)聯(lián)的?

  (3)根據(jù)以往經(jīng)驗,可將相等的兩個比怎樣?(用等號連接)

  教師并指出這些式子就是比例。

  2、 讓學生任意寫出比例,并讓學生用自己的語言描述比例的意義。

  3、 教師板書:表示兩個比相等的式子叫做比例。比例也可用分數(shù)形式表示。

  4、 寫出比值是1/3的`兩個比,并組成比例。

 。ǘ 教學比例的基本性質(zhì)

  1、 比例和比有什么區(qū)別?

  2、 認識比例的各部分

 。1)讓學生自己取。

 。2)組成比例的四個數(shù)叫做比例的項,兩端的兩項叫做比例的

  外項,中間的兩項叫做比例的內(nèi)項。

  板書: 8 : 6 = 4 : 3

  內(nèi) 項

  外 項

 。3)讓學生找出自己舉的比例的內(nèi)外項。

 。 )

  12

  2

  ( )

  =

 。4)找出分數(shù)形式比例的內(nèi)外項位置又是怎樣的?

  3、 出示 【啟迪學生思維,展開審美想象】

 。1) 這個比例已知的是哪兩項,要求的又是哪兩項?學生試填。

 。2) 學生反饋,教師板書。

 。3) 你發(fā)現(xiàn)了什么?

 。4) 指導學生概括出比例的基本性質(zhì),并板書:在比例里,兩個外項之積等于兩個內(nèi)項之積。

  4、 用比例性質(zhì)驗證你所寫比例是否正確。

  5、練習 8 : 12 = X : 45

  0.5

  X

  20

  32

  =

  求比例中的未知項,叫做解比例。

  如何證明你的解是正確的?

 。ㄈ 小結(jié):今天這堂課你有什么收獲?

  三、 鞏固練習

  1、下面哪幾組中的兩個比可以組成比例。

  4

  1

  12 : 24 和18 : 36

  0.4 : 和0.4 : 0.15

  14 : 8 和7 : 4

  5

  2

  2、根據(jù)18 x 2 = 9 x 4 寫出比例!倔w會到數(shù)學的邏輯美,規(guī)律美】

  3、從1 、8、0.6、3、7五個數(shù)中

 。1) 選出四個數(shù),組成比例。

 。2) 任意選出3個數(shù),再配上另一個數(shù),組成比例。

 。3) 用所學知識進行檢驗。

  四、 實際應(yīng)用

  不久前,汪駿強家的菜地邊高高矗立起一個新鐵塔,這天午后,陽光明媚,鄰居家剛讀一年級的小明又拉著汪駿強來到鐵塔下,玩著玩著,小明問道:“強強哥哥,這鐵塔干嘛用?”“鐵塔嘛,架設(shè)高壓線用的,以后等電線架好了,可不能再來玩了,更不能攀登,高壓線可危險了!”“那這個鐵塔有多高壓呀?”

  同學們,如果你是汪駿強,你準備怎么辦?

  執(zhí)教者 方 艷

  《比例的意義》教案 篇3

  教學目標:

  1、使學生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。

  2、培養(yǎng)學生概括能力和分析判斷能力。

  3、培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。

  教學重點:

  成正比例的量的特征及其判斷方法。

  教學難點:

  理解兩個變量之間的比例關(guān)系,發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量的變化規(guī)律.

  教 法:

  啟發(fā)引導法

  學 法:

  自主探究法

  教 具:

  課件

  教學過程:

  一、定向?qū)W(5分)

  1、已知路程和時間,求速度

  2、已知總價和數(shù)量,求單價

  3、已知工作總量和工作時間,求工作效率

  4、導入課題

  今天我們來學習成正比例的量。

  5、出示學習目標

  1、理解正比例的意義。

  2、能根據(jù)正比例的意義判斷兩種量是不是成正比例。

  二、自主學習(8分)

  自學內(nèi)容:書上45頁例1

  自學時間:8分鐘

  自學方法:讀書法、自學法

  自學思考:

  1、舉例說明什么是成正比例的量,成正比例的.量要具備幾個條件?

  2、正比例關(guān)系式是什么?

 。1)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。例如底面積一定,體積和高成正比例。

 。2)構(gòu)成正比例關(guān)系的兩種量,必須具備三個條件:一是必須是兩種相關(guān)聯(lián)的量,二是一種量變化另一種量也隨著變化,三是比值(商)一定

 。3)如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?

  y/x=k(一定)

  (4)不計算,根據(jù)圖像判斷,如果杯中水的高度是7厘米,那么水的體積是175立方米?225立方厘米的水有9厘米。

  2、歸類提升

  引導學生小結(jié)成正比例的量的意義和關(guān)系式。

  三、合作交流(5分)

  第46頁正比例圖像

  1、正比例圖像是什么樣子的?

  2、完成46頁做一做

  3、各組的b1同學上臺講解

  四、質(zhì)疑探究(5分)

  1、第49頁第1題

  2、第49頁第2題

  3、你還有什么問題?

  五、小結(jié)檢測(8分)

  1、什么是正比例關(guān)系?如何判斷是不是正比例關(guān)系?

  2、檢測

  1、49頁第3題。

  六、堂清作業(yè)(9分)

  練習九頁第4、5題。

  板書設(shè)計:

  成正比例的量

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

  關(guān)系式:

  y/x=k

 。ㄒ欢ǎ

  《比例的意義》教案 篇4

  教學內(nèi)容:教科書第22—24頁反比例的意義,練習六的第4—6題。

  教學目的:

  1.使學生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。

  2.使學生進一步認識事物之間的相互聯(lián)系和發(fā)展變化規(guī)律。

  3.初步滲透函數(shù)思想。

  教具準備:投影儀、投影片、小黑板。

  教學過程():

  一、復(fù)習

  1.讓學生說說什么是成正比例的量:

  2.用投影片出示下面的題:

  (1)下面各題中哪兩種量成正比例?為什么?

  ①筆記本單價一定,數(shù)量和總價:

 、崞囆旭偹俣纫欢ǎ旭偟穆烦毯蜁r間。

 、诠ぷ餍室欢ǎぷ鲿r間和工作總量。

  ①一袋大米的重量一定.吃了的和剩下的。

  (2)說出每小時加工零件數(shù)、加工時間和加工零件總數(shù)三者間的數(shù)量關(guān)系。在什么條件下,其中兩種量成正比例?

  二、導入新課

  教師:如果加工零件總數(shù)一定。每小時加工數(shù)和加工時間會成什么樣的變化.關(guān)系怎樣?就是我們這節(jié)課要學習的內(nèi)容。

  三、新課

  1.教學例4。

  出示例4;豐機械廠加工一批機器零件。每小時加工的數(shù)量和所需的加工時間如下表。

  讓學生觀察這個表,然后每四人一組討論下面的問題:

  (1)表中有哪兩種量?

  (2)所需的加工時間怎樣隨著每小時加工的個數(shù)變化?

  (3)每兩個相對應(yīng)的數(shù)的乘積各是多少?

  學生分組討論后集中發(fā)言。然后每個小組選代表回答上面的問題。隨著學生的回答,教師板書如下:每小時加工數(shù)加工時間

  10 × 60 =600。

  30 × 20 =600。

  40 × 15 =600,

  “這個積600。實際上是什么?”在“加工時間”后面板書:零件總數(shù)

  “積一定,就說明零件總數(shù)怎樣?”在零件總數(shù)后面板書:(一定)

  “每小時加工數(shù)、加工時間和零件總數(shù)這三種量有什么關(guān)系呢?”

  學生回答后,教師小結(jié):通過剛才的觀察分析.我門可以看出。表中每小時加工零件數(shù)和所需的加工時間是兩種相關(guān)聯(lián)的量。所需的加工時間是隨著每小時加工數(shù)量的變化而變化的,每小時加工的數(shù)量擴大。所需的加工時間反而縮小3每小時加工的數(shù)量縮小,所需的加工的時間反而擴大。它們擴大、縮小的規(guī)律是:每小時加工的零件的數(shù)量和所需的加工時間的積都等于600,即總是一定的:我們把這種關(guān)系寫成式子就是:每小時加工數(shù)×加工的時間=零件總數(shù)(一定)。

  2.教學例5。

  用小黑板出示例5用600頁紙裝訂成同樣的練習本,每本的頁數(shù)和裝訂的本數(shù)有什么關(guān)系呢?請你先填寫下表。

  (1)理解題意,填寫裝訂本數(shù)。

  “誰能說說表中第一欄數(shù)據(jù)的意思?”(用600頁紙裝訂練習本,如果每本練習本15頁,可以裝訂40本。)

  “這40本是怎么計算出來的?”(用600÷15)

  “如果每本練習本是20頁,你能計算出可以裝訂多少這樣的練習本嗎?如果每本是25頁呢?……請你把計算出來的本數(shù)填在教科書第23頁的表中。”教師把學生報出的數(shù)據(jù)填在黑板上的表中。

  (2)觀察分析表中兩種量的變化規(guī)律。

  讓學生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁數(shù)裝訂的本數(shù))

  “裝訂的本數(shù)是怎樣隨著每本的頁數(shù)變化的.?”隨著學生的回答,板書如下:每本的頁數(shù) 裝訂的本數(shù)

  15 40

  20 30

  25 24

  一’然后讓學生判斷下面每題中的兩種量成不成比例,是成正比例還是成反比例。

  1,單價一定.數(shù)量和總價。

  2,路程一定,速度和時間。。

  3,正方形的邊長和它的面積。

  1.時間一定,工效和工作總量。

  二、導入新課

  教師:我們在前兩節(jié)課分別學習了成正比例的量和成反比例的量。初步學會判斷

  兩種量是不是成正比例或反比例的關(guān)系,發(fā)現(xiàn)有些同學判斷時還不夠準確。這節(jié)課我

  們要通過比較弄清成正比例的量和成反比例的量有什么相同點和不同點。

  板書課題:正比例和反比例的比較

  三、新課

  1.教學例7。

  出示例7的兩個表:

  表1 表2

  讓學生觀察上面的兩個表,然后根據(jù)兩個表所提的問題,分別在教科書上填空。訂正時。指名說出自己是怎樣填的,教師板書:

  在表l中: 在表2中:

  相關(guān)聯(lián)的量是路程和時間. 路程隨著相關(guān)聯(lián)的量是速度 路程隨 時間變化,速度是 和時間,速度隨著時間變化

  一定。因此,路程和時間 ,路程是一定的。因此,速

  成正比例關(guān)系。 度和時間成反比例關(guān)系

  然后提問:

  (1)從表1,你怎樣發(fā)現(xiàn)速度是一定的?你根據(jù)什么判斷路程和時間成正比例/

  (2)從表2,你怎樣發(fā)現(xiàn)路程是一定的?你根據(jù)什么判斷速度和時間成反比例?

  教師:路程、速度和時間這三個量中每兩個量之間有什么樣的比例關(guān)系?

  板書:速度×時間=路程

  =速度 =速度

  教師:當速度一·定時,路程和時間成什么比例關(guān)系?

  教師:當路程一定時,速度和時間成什么比例關(guān)系?

  教師:當時間一定時。路程和速度成什么比例關(guān)系?

  2.比較正比例和反比例關(guān)系。

  教師:結(jié)合上面兩個例子,比較——下正比例關(guān)系和反比例關(guān)系,你能寫出它們的相同點和不同點嗎?試試看。組織討論,教師歸納并板書:

  四、鞏固練習

  1.做教科書第28頁“做一做”中的題目。

  讓學生自己填,并說一說為什么。

  2.做練習七的第1—2題。

  教師巡視,個別輔導,最后訂正。

  五、小結(jié)

  教師:請同學們說說正比例和反比例關(guān)系有什么相同點和不同點?

  《比例的意義》教案 篇5

  教學要求:

  1.使學生認識反比例關(guān)系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關(guān)系。

  2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關(guān)聯(lián)的量成不成反比例的方法,培養(yǎng)學生判斷、推理的能力。

  教學重點:

  認識反比例關(guān)系的意義。

  教學難點:

  掌握成反比例量的變化規(guī)律及其特征。

  教學過程:

  一、鋪墊孕伏:

  1.正比例關(guān)系的意義是什么?怎樣用字母表示這種關(guān)系?

  判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?

  2.下面哪兩種量成正比例關(guān)系?為什么?

  (1)時間一定,行駛的速度和路程。

  (2)數(shù)量一定,單價和總價。

  3.說一說工作效率、工作時間和工作總量之間的數(shù)量關(guān)系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學習的反比例關(guān)系。(板書課題)

  二、自主探究:

  1.教學例1。

  出示例1某運輸公司要運一批300噸的貨物。讓學生計算并完成填表任務(wù)。

  每天運的數(shù)量(噸) 10 20 30 40 50

  所需的天數(shù) 30 15 10 7.5

  在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。

  指名學生口答 討論結(jié)果得出:

  (1)每天運的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。

  (2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。

  (3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是300。提問:這里的300是什么數(shù)量?誰能說出這里的數(shù)量關(guān)系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)

  2.教學例2

  出示例2

  請同學們按照剛才學習例1的方法,自己學習例2,仔細想想你發(fā)現(xiàn)了些什么?學生觀察思考后,小組討論:長方形的面積不變,當長發(fā)生變化時,長方形的寬發(fā)生變化嗎?變化的規(guī)律是怎樣的?

  3.概括反比例的意義。

  (1)綜合例1、例2的共同點。

  提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的`地方?

  (2)概括反比例意義。

  例1、例2里兩種相關(guān)聯(lián)的量,它們是什么關(guān)系的量呢?說明:像例1、例2里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應(yīng)的兩個數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。迫問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用xy=k(一定)來表示。

  4.具體認識。

  (1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成反比例關(guān)系嗎?為什么,

  例2里的兩種量成反比例關(guān)系嗎?為什么?

  (2)提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?

  (3) 判斷。

  現(xiàn)在回過來看開始寫的關(guān)系式:工作效率工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關(guān)系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時乘積一定,那它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。

  《比例的意義》教案 篇6

  教學目標:

  1、學生根據(jù)具體情境教學,結(jié)合實例認識正比例,理解正比例的意義,正比例的意義教學設(shè)計。

  2、能根據(jù)正比例的意義,判斷兩個相關(guān)聯(lián)的量是不是成正比例。

  3、結(jié)合豐富的事例,認識正比例,體會數(shù)學源于生活,進一步提高學習興趣。教學重點:

  結(jié)合豐富的事例,認識正比例。能根據(jù)正比例的意義,判斷兩個相關(guān)聯(lián)的量是不是成正比例。

  教學難點:

  能根據(jù)正比例的意義,判斷兩個相關(guān)聯(lián)的量是不是成正比例。

  教學關(guān)鍵:

  理解成正比例的兩個量的意義。

  教學過程:

  一、復(fù)習準備:

  口答

  1、已知路程和時間,怎樣求速度?

  2、已知總價和數(shù)量,怎樣求單價?

  3、已知工作總量和工作時間,怎樣求工作效率?

  二、數(shù)學活動。在學活動的過程中,感受數(shù)學思考過程的條理性和數(shù)學結(jié)論的確定性,并樂于與人交流。

  活動一:在情境中感受兩種相關(guān)聯(lián)的量之間的變化規(guī)律。

  (一)情境一:

  課件出示:

  1、觀察圖,分別把正方形的周長與邊長,面積與邊長的變化情況填入表格中。請根據(jù)你的觀察,把數(shù)據(jù)填在表中。

  2、填完表以后思考討論,教案《正比例的意義教學設(shè)計》。正方形的面積與邊長的變化是否有關(guān)系?它們的變化分別有怎樣的規(guī)律?規(guī)律相同嗎?說說從數(shù)據(jù)中發(fā)現(xiàn)了什么?

  3、小結(jié):正方形的周長和面積都隨邊長的增加而增加,在變化過程中,正方形的周長與邊長的比值一定都是一定的。

  特點是:

 、賰煞N相關(guān)聯(lián)的量

 、谝环N量擴大(或縮小)另一種量也擴大(或縮小)

 、蹆煞N量中相對應(yīng)的兩個量的比的比值是一定的。

  4、正方形的面積與邊長的比是邊長,是一個不確定的值。

  學生在小組內(nèi)練說發(fā)現(xiàn)的規(guī)律,初步感知正比例的判定。

  (二)情境二:

  1、一種汽車行駛的速度為90千米/小時。汽車行駛的時間和路程如下:

  2、請把下表填寫完整。3、從表中你發(fā)現(xiàn)了什么規(guī)律?說說你發(fā)現(xiàn)的規(guī)律:路程與時間的比值(速度)相同。

  (三)情境三:1、一些人買一種蘋果,購買蘋果的質(zhì)量和應(yīng)付的錢數(shù)如下。

  2、把表填寫完整。3、從表中發(fā)現(xiàn)了什么規(guī)律?應(yīng)付的錢數(shù)與質(zhì)量的比值(也就是單價)相同。

  3、說說以上兩個例子有什么共同的特點。

  小結(jié):路程隨時間的變化而變化,路程與時間的`比值相同;應(yīng)付的錢數(shù)隨購買蘋果的質(zhì)量的變化而變化,應(yīng)付的錢數(shù)與質(zhì)量的比值相同。

  4、正比例關(guān)系:觀察思考成正比例的量有什么特征?

  小結(jié):

  (1)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。這就是我們今天要學習的內(nèi)容。

  追問:判斷兩種相關(guān)聯(lián)的量成不成正比例的關(guān)鍵是什么?(比值是不是一定)

  (2)字母表達關(guān)系式。

  如果字母y和x分別表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,正比例關(guān)系怎樣用字母表示出來?=k(一定)

  (3)質(zhì)疑。

  師:根據(jù)正比例的意義以及表示正比例關(guān)系的式子想一想:構(gòu)成正比例關(guān)系的兩種量必須具備哪些條件?

  三、鞏固練習

  (一)想一想:請生用自己的語言說一說。與同桌交流,再集體匯報

  1、正方形的周長與邊長成正比例嗎?面積與邊長呢?為什么?

  2、根據(jù)小明和爸爸的年齡變化情況

  把表填寫完整。父子的年齡成正比例嗎?為什么?

  (二):練一練。教師適度點撥引導,強調(diào)正比例關(guān)系判斷的關(guān)鍵。先自己獨立完成,然后集體訂正,說理由。

  1、判斷下面各題中的兩個量,是否成正比例,并說明理由。

  (1)每袋大米的質(zhì)量一定,大米的總質(zhì)量和袋數(shù)。

  (2)一個人的身高和年齡。

  (3)寬不變,長方形的周長與長。

  2、根據(jù)下表中平行四邊形的面積與高相對應(yīng)的數(shù)值,判斷當?shù)资?厘米的時候,它們是是成正比例,并說明理由。

  3、買郵票的枚數(shù)與應(yīng)付的錢數(shù)成正比例嗎?填寫表格。先填寫表格,再說明理由

  4、畫一畫,你會有新的發(fā)現(xiàn)。

  彩帶每米4元,購買2米、3米…彩帶分別需要多少錢?

 、偬钜惶睿(長度:米,價格:元)

 、诋嬕划,把上表中長度和價錢對應(yīng)的點描在坐標紙上,再順次連接起來?窗l(fā)現(xiàn)了什么?

  板書:

  正比例的意義

 、賰煞N相關(guān)聯(lián)的量

  ②一種量擴大(或縮小)另一種量也擴大(或縮小)

 、蹆煞N量中相對應(yīng)的兩個量的比的比值是一定的

  路程÷時間=速度(一定)總價÷數(shù)量=單價(一定)

  =k(一定)

  《比例的意義》教案 篇7

  教學內(nèi)容:教材第99~102頁例1~例3。

  教學要求:

  1.使學生認識反比例關(guān)系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關(guān)系。

  2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關(guān)聯(lián)的量成不成反比例的方法,培養(yǎng)學生判斷、推理的能力。

  教學重點:認識反比例關(guān)系的意義。

  教學難點:掌握成反比例量的變化規(guī)律及其特征。

  教學過程:

  一、鋪墊孕伏:

  1.正比例關(guān)

  系的意義是什么?怎樣用字母表示這種關(guān)系?

  判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?

  2.下面哪兩種量成正比例關(guān)系?為什么?

  (1)時間一定,行駛的速度和路程。

  (2)數(shù)量一定,單價和總價。

  3.說一說工作效率、工作時間和工作總量之間的數(shù)量關(guān)系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學習的反比例關(guān)系。(板書課題)

  二、自主探究:

  1.教學例2。

  出示例2某運輸公司要運一批300噸的貨物。讓學生計算并完成填表任務(wù)。

  每天運的數(shù)量(噸)1020304050

  所需的天數(shù)

  在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。

  指名學生口答討論的結(jié)果,得出:

  (1)每天運的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。

  (2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。

  (3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關(guān)系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)

  2.教學例1

  出示例1。

  請同學們按照剛才學習例4的方法,自己學習例1,仔細想想你發(fā)現(xiàn)了些什么?學生觀察思考后,小組討論:長方形的面積比變,當長發(fā)生變化時,長方形的寬發(fā)生變化嗎?變化的規(guī)律是怎樣的?

  3.概括反比例的意義。

  (1)綜合例1、例2的共同點。

  提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的地方?

  (2)概括反比例意義。

  例1、例2里兩種相關(guān)聯(lián)的'量,它們是什么關(guān)系的量呢?請同學們看第101頁1~3自然段。說明:像例1、例2里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應(yīng)的兩個數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。迫問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用xy=k(一定)來表示。

  4.具體認識。

  (1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成反比例關(guān)系嗎?為什么,

  例2里的兩種量成反比例關(guān)系嗎?為什么?

  (2)提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?

  (3)判斷。

  現(xiàn)在回過來看開始寫的關(guān)系式:工作效率工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關(guān)系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。

  5.教學例3。

  出示例3,看書自學,小組討論,集體交流。追問:判斷兩種量成不成反比例要怎樣想?其中關(guān)鍵是看什么?

  三、鞏固練習

  用剛才我們說的判斷方法來做幾道題。

  1.做練一練。

  指名學生口答,說明理由。(可以寫出數(shù)量關(guān)系式看一看)

  2.下題兩種相關(guān)聯(lián)量成不成反比例?為什么?

  一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

  3.做練習十二第1題。

  四、課堂小結(jié)

  這節(jié)課學習的是什么內(nèi)容?反比例關(guān)系的意義是什么?用怎樣的式子表示x和y這兩種相關(guān)聯(lián)的量成反比例?判斷兩種量是不是成反比例,關(guān)鍵是什么?

  五、課堂作業(yè)

  練習十二第2~4題。

  《比例的意義》教案 篇8

  教學目標

  一、知識目標

  1、使學生理解比例的意義和比例的基本性質(zhì).

  2、認識比例的各部分名稱,會組成比例.

  二、能力目標

  1、使學生學會應(yīng)用比例的意義和基本性質(zhì)判斷兩個比能否組成比例,并能正確組成比例.

  2、培養(yǎng)學生的觀察能力和判斷能力.

  三、情感目標

  1、對學生進一步滲透辨證唯物主義觀點的啟蒙教育.

  2、使學生感悟到美源于生活,美來自生產(chǎn)和時代的進步,提高審美意識

  教學重點

  比例的意義和基本性質(zhì).

  教學難點

  應(yīng)用比例的意義或基本性質(zhì)判斷兩個比能否組成比例,并能正確地組成比例.

  教學對象分析

  低年級學生思維的基本特點是:從以具體形象思維為主要形式過渡到以抽象邏輯思維為主要形式,針對這一特點,利用多媒體這一新穎、直觀的現(xiàn)代教學手段創(chuàng)設(shè)引人入勝的教學情境,并通過動手操作,討論探究,觀察分析,給學生充分的時間和機會,讓他們主動參與獲取知識的全過程,從而培養(yǎng)學生問題意識、策略意識及創(chuàng)新意識。

  教學策略及教法設(shè)計

  教學時有意識創(chuàng)設(shè)情境,激發(fā)學生探索問題的欲望,不斷發(fā)現(xiàn)問題,解決問題.通過動手操作,觀察演示,小組討論等活動,讓學生運用知識和能力的.遷移規(guī)律,將知識結(jié)構(gòu)轉(zhuǎn)化為學生的認知結(jié)構(gòu),突出學生的主體作用.

  1.多媒體教學

  運用微機精心設(shè)置問題情境,使學生自覺發(fā)現(xiàn)、意識到問題存在,可激活學生思維,促使問題意識的產(chǎn)生,又可以調(diào)動學生探索新知的積極性.

  2.動手操作法

  引導學生發(fā)現(xiàn)問題,提出問題,然后組織學生借助學具動手操作,尋求多種計算方法,同時運用多媒體,變靜為動,直觀形象,再結(jié)合語言表述,使學生的思維逐漸內(nèi)化.

  教學步驟

  一、鋪墊孕伏

  1、什么叫做比?

  2、什么叫做比值?

  3、求下面各比的比值:

  4、教師提問:上面哪些比的比值相等?( 和 這兩個比的比值相等)

  教師: 和 這兩個比的比值相等,也就是說這兩個比是相等的,因此它們可以用等號連接.(板書: = )

  二、探究新知

 。ㄒ唬┍壤囊饬x

  例1、一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米.列表如下:

  時間(時)

  2

  5

  路程(千米)

  80

  200

  1、教師提問:從上表中可以看到,這輛汽車,

  第一次所行駛的路程和時間的比是幾比幾?

  第二次所行駛的路程和時間的比是幾比幾?

  這兩個比的比值各是多少?它們有什么關(guān)系?(兩個比的比值都是40,相等)

  2、教師明確:兩個比的比值都是40,所以這兩個比相等.因此可以寫成這樣的等式

  或 .

  3、揭示意義:像 = 、 這樣的等式,都是表示兩個比相等的式子,我們把它叫做比例.(板書課題:比例的意義)

  教師提問:什么叫做比例?組成比例的關(guān)鍵是什么?

  板書:表示兩個比相等的式子叫做比例.

  關(guān)鍵:兩個比相等

  4、練習

  下面哪組中的兩個比可以組成比例?把組成的比例寫出來.

 、 和 ② 和

 、 和 ④ 和

  填空

 、偃绻麅蓚比的比值相等,那么這兩個比就( )比例.

 、谝粋比例,等號左邊的比和等號右邊的比一定是( )的.

 。ǘ┍壤幕拘再|(zhì)

  1、教師以 為例說明:組成比例的四個數(shù),叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內(nèi)項.(板書)

  2、練習:指出下面比例的外項和內(nèi)項.

  3、讓學生計算上面每一個比例中的外項積和內(nèi)項積,并討論它們存在什么關(guān)系?

  以 為例,指名來說明.

  外項積是:80×5=400

  內(nèi)項積是:2×200=400

  80×5=2×200

  4、學生自己任選兩三個比例,計算出它的外項積和內(nèi)項積.

  5、教師明確:在比例里,兩個外項的積等于兩個內(nèi)項的積.這叫做比例的基本性質(zhì)

 。ò鍟n題:加上“和基本性質(zhì)”,使課題完整.)

  6、思考:如果把比例寫成分數(shù)形式,等號兩端的分子和分母分別交叉相乘的積有什么關(guān)系?為什么?

  教師板書:

  7、練習

  應(yīng)用比例的基本性質(zhì),判斷下面哪一組中的兩個比可以組成比例.

  三、課堂小結(jié)

  這節(jié)課我們學習了比例的意義和基本性質(zhì),并學會了應(yīng)用比例的意義和基本性質(zhì)組成比例.

  四、鞏固練習

  1、說一說比和比例有什么區(qū)別.

  比是表示兩個數(shù)相除的關(guān)系,有兩項;

  比例是一個等式,表示兩個比相等的關(guān)系,有四項.

  2、在 這個比例中,外項是( )和( ),內(nèi)項是( )和( ).

  根據(jù)比例的基本性質(zhì)可以寫成( )×( )=( )×( ).

  3、根據(jù)比例的意義或者基本性質(zhì),判斷下面哪組中的兩個比可以組成比例.

 。1) 和 (2) 和

  (3) 和 (4) 和

  4、下面的四個數(shù)可以組成比例嗎?把組成的比例寫出來.(能組幾個就組幾個)

  2、3、4和6

  五、課后作業(yè)

  根據(jù)3×4=2×6寫出比例.

  六、板書設(shè)計

  《比例的意義》教案 篇9

  素質(zhì)教育目標

 。ㄒ唬┲R教學點

  1.使學生理解正比例的意義。

  2.能根據(jù)正比例的意義判斷兩種量是不是成正比例。

 。ǘ┠芰τ柧汓c

  1.培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。

  2.培養(yǎng)學生抽象概括能力和分析判斷能力。

 。ㄈ┑掠凉B透點

  1.通過引導學生用發(fā)展變化的觀點來分析問題,使學生進一步受到辯證唯物主義觀點的啟蒙教育。

  2.進一步滲透函數(shù)思想。

  教學重點:使學生理解正比例的意義。

  教學難點:引導學生通過觀察、思考發(fā)現(xiàn)兩種相關(guān)聯(lián)的量的變化規(guī)律,即它們相對應(yīng)的數(shù)的比值一定,從而概括出正比例關(guān)系的概念。

  教具學具準備:投影儀、投影片、小黑板。

  教學步驟

  一、鋪墊孕伏

  用投影逐一出示下列題目,請同學回答:

  1.已知路程和時間,怎樣求速度?

  2.已知總價和數(shù)量,怎樣求單價?

  3.已知工作總量和工作時間,怎樣求工作效率?

  二、探究新知

  1.導入新課:這些都是我們已經(jīng)學過的常見的數(shù)量關(guān)系。這節(jié)課,我們繼續(xù)研究這些數(shù)量關(guān)系中的一些特征。

  2.教學例1

  (1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米……

 。2)出示下表,并根據(jù)上述內(nèi)容填表。

  一列火車行駛的時間和所行的路程如下表

 。3)邊填表邊思考:在填表過程中,你發(fā)現(xiàn)了什么?

  學生交流時,使之明確。

 、俦碇杏袝r間和路程兩種量。

 、诋敃r間是1小時,路程則是60千米,時間是2小時,路程是120千米……時間變化,路程也隨著變化,時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。

  教師點撥:

  像這樣,時間變化,路程也隨著變化,我們就說,時間和路程是兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)

 、廴绻麑W生沒有問題,教師提示:請每位同學任選一組相對應(yīng)的數(shù)據(jù),計算出路程與時間的比的比值。

  教師問:根據(jù)計算,你發(fā)現(xiàn)了什么?

  引導學生得出:相對應(yīng)的兩個數(shù)的比值都是60或都一樣,固定不變等。

  教師指出:相對應(yīng)的兩個數(shù)的比的比值都一樣或固定不變,在數(shù)學上叫做“一定”。(板書:相對應(yīng)的兩個數(shù)的比值一定)

 、鼙戎60,實際就是火車的速度。用式子表示它們的.關(guān)系就是:

 。4)教師小結(jié):

  剛才同學們通過填表、交流,我們知道時間和路程是兩種相關(guān)聯(lián)的量,路程隨著時間的變化而變化。時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。它們擴大、縮小的規(guī)律是:路程和時間的比的比值總是一定的。

  3.教學例2

 。1)出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價的表。

 。2)觀察上表,引導學生明確:

 、俦碇杏袛(shù)量(米數(shù))和總價這兩種量,它們是兩種相關(guān)聯(lián)的量。

 、诳們r隨米數(shù)的變化情況是:

  米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價也隨著縮小。

 、巯鄬(yīng)的總價和米數(shù)的比的比值是一定的。

 、鼙戎3.1,實際就是這種花布的單價。用式子表示它們的關(guān)系就是:

  (3)師生小結(jié):通過剛才的觀察和分析,我們知道總價和米數(shù)也是兩種什么樣的量?(兩種相關(guān)聯(lián)的量)為什么?(總價隨著米數(shù)的變化而變化。)怎樣變化?(米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價隨著縮小。)它們擴大、縮小的規(guī)律是怎樣的?(總價和米數(shù)的比的比值總是一定的。)

  4.抽象概括正比例的意義。

 。1)比較例1、例2,思考并討論,這兩個例子有什么共同點?

  (2)學生初步交流時引導學生明確:

 、倮1中有路程和時間兩種量;例2中有米數(shù)和總價兩種量。即它們都有兩種相關(guān)聯(lián)的量;

 、诶1中時間變化,路程就隨著變化;例2中米數(shù)變化,總價也隨著變化。

  教師點撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)

 、劾1中路程與時間的比的比值一定:例2中總價與米數(shù)的比的比值一定。概括地講就是:兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定。

 。▽W生答不出來時,教師引導、點撥,并補充板書:兩種量中)

 。3)引導學生抽象概括出兩例的共同點:

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定。

 。4)教師指明:兩種相關(guān)聯(lián)的量,一種變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

 。ㄑa充板書:如果這成正比例的量正比例關(guān)系)

  這就是我們這節(jié)課學習的“正比例的意義”(板書課題)

 。5)看書19、20頁的內(nèi)容,進一步理解正比例的意義。

 。6)教師說明:在例1中,路程隨著時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。

 。7)想一想:在例2中,有哪兩種相關(guān)聯(lián)的量?它們是不是成正比例的量?為什么?

 。8)教師提出:如果字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?

 。9)教師提出:根據(jù)正比例的意義以及表示正比例關(guān)系的式子想一想:構(gòu)成正比例關(guān)系的兩種量必須具備哪些條件?

  5.教學例3

 。1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

  (2)根據(jù)正比例的意義,由學生討論解答。

 。3)匯報判斷結(jié)果,并說明判斷的根據(jù)。

  教師板書:

  面粉的總重量和袋數(shù)是兩種相關(guān)聯(lián)的量。

  所以面粉的總重量和袋數(shù)成正比例。

  6.反饋練習

  讓學生試做第21頁的做一做,并訂正。

  三、鞏固發(fā)展

  1.完成練習三第1題。

  先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應(yīng)數(shù)的比的比值。如果相等,列關(guān)系式判斷。第(3)題不成比例,訂正時要學生說明為什么?

  《比例的意義》教案 篇10

  教學內(nèi)容

  教科書第52頁例1,第55頁課堂活動第1題及練習十二1,2,3題。

  教學目標

  1.使學生通過具體問題情境認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關(guān)系,能找到生活中成正比例的實例,并進行交流。

  2.通過探索正比例意義的教學活動,使學生感受事物中充滿著運動、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。

  3.通過觀察、交流、歸納、推斷等教學活動,感受數(shù)學思維過程的合理性,培養(yǎng)學生的觀察能力、推理能力、歸納能力和靈活應(yīng)用知識的能力。

  教學重點

  認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關(guān)系。

  教學難點

  理解正比例的意義,感受事物中充滿著運動、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。

  教學準備

  教具:多媒體課件。

  學具:作業(yè)本,數(shù)學書。

  教學過程

  一、聯(lián)系生活,復(fù)習引入

 。1)下面是居委會張阿姨負責的小區(qū)水費收繳情況,用這個表中的數(shù)能寫成多少個有意義的比?哪些比能組成比例?把能組成的比例都寫出來。

 。2)揭示課題。

  教師:在上面的表中,有哪兩種量?(水費和用水量、總價和數(shù)量)在我們平時的生活中,除了這兩種量,我們還要遇到哪些數(shù)量呢?

  教師:這些數(shù)量之間藏著不少的知識,今天這節(jié)課我們就來研究這些數(shù)量間的一些規(guī)律和特征。

  二、自主探索,學習新知

  1.教學例1

  用課件在剛才準備題的表格中增加幾列數(shù)據(jù),變成表。

  教師:請同學們觀察這張表,先獨立思考后再討論、交流:從這張表中你發(fā)現(xiàn)了什么規(guī)律?并根據(jù)這種規(guī)律幫助張阿姨把表格填寫完整。

  教師根據(jù)學生的回答將表格完善,并作必要的板書。

  教師:同學們發(fā)現(xiàn)表格中的水費隨著用水量的增加也在不斷增加,像這樣水費隨著用水量的變化而變化,我們就說水費和用水量是相互關(guān)聯(lián)的。

  板書:相關(guān)聯(lián)

  教師:你們還發(fā)現(xiàn)哪些規(guī)律?

  學生在這里主要體會水費除以用水量得到的每噸水單價始終是不變的,教師可根據(jù)學生的回答板書出來,便于其他學生觀察:

  教師:水費除以用水量得到的單價相等也可以說是水費與用水量的比值相等,也就是一個固定的數(shù)。

  板書:

  2.教學試一試

  教師:我們再來研究一個問題。

  課件出示第52頁下面的試一試。

  學生先獨立完成。

  教師:你能用剛才我們研究例1的方法,自己分析這個表格中的數(shù)據(jù)嗎?

  教師根據(jù)學生的`回答歸納如下:

  表中的路程和時間是相關(guān)聯(lián)的量,路程隨著時間的變化而變化。

  時間擴大若干倍,路程也擴大相同的倍數(shù);時間縮小若干倍,路程縮小相同的倍數(shù)。

  路程與時間的比值是一定的,速度是每時80 km,它們之間的關(guān)系可以寫成路程時間=速度(一定)

  3.教學議一議

  教師:我們研究了上面生活中的兩個問題,誰能發(fā)現(xiàn)它們之間的共同點呢?

  引導學生歸納出這兩個問題中都有相關(guān)聯(lián)的量,一種量擴大或縮小若干倍,另一種量也隨著擴大或縮小相同的倍數(shù),所以它們的比值始終是一定的。

  教師:像上面這樣的兩種量,叫做成正比例的量,它們的關(guān)系叫做成正比例關(guān)系。

  4.教學課堂活動

  教師:請大家說一說生活中還有哪些是成正比例的量。

  三、夯實基礎(chǔ),鞏固提高

 。1)完成練習十二的第1題。

  教師:請同學們用所學知識判斷一下,下面表中的兩種量成正比例關(guān)系嗎?為什么?

  學生獨立思考,先小組內(nèi)交流再集體交流。

 。2)完成練習十二的第2題。

  四、全課小結(jié)

  教師:這節(jié)課你們學到了哪些知識?用了哪些學習方法?還有哪些不懂的問題?

  《比例的意義》教案 篇11

  一、教學目標

  知識與技能目標:在具體情境中,理解比例的意義和基本性質(zhì),會應(yīng)用比例的意義和基本性質(zhì)正確判斷兩個比能否組成比例。

  過程與方法目標:在探索比例的意義和基本性質(zhì)的過程中發(fā)展推理能力。

  態(tài)度價值觀目標:通過自主學習,經(jīng)歷探究的過程,體驗成功的快樂。

  二、教學重點難點

  重點: 理解比例的意義和基本性質(zhì)。

  難點:判斷兩個比是否成比例。

  三、教學過程設(shè)計

 。ㄒ唬﹦(chuàng)設(shè)情境,提出問題

  1. 復(fù)習導入:

  (1)什么叫做比?

  兩個數(shù)相除又叫做兩個數(shù)的比。

  (2)什么叫做比值?

  比的前項除以比的后項所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  談話:今天我們要學的知識也和比有著密切的關(guān)系。

  2、創(chuàng)設(shè)情境,提出問題。

  談話:同學們,你們知道青島都有哪些產(chǎn)品非常有名?(學生根據(jù)自己的了解回答)青島啤酒享譽世界各地,這節(jié)課,我們將一起去探索啤酒生產(chǎn)中的數(shù)學

  出示課件:這是一輛貨車正在運輸啤酒的主要生產(chǎn)原料大麥芽。

  這是它兩天的運輸情況:

  一輛貨車運輸大麥芽情況

  第一天 第二天

  運輸次數(shù) 2 4

  運輸量(噸) 16 32

  根據(jù)這個表格,讓學生提出有關(guān)比的數(shù)學問題。同桌倆人,一個提問題,一個將問題的答案寫在本上,看哪對同桌合作得最好,提出的問題最多。

  談話:誰來交流?跟大家說一下你的問題是什么?

  學生可能出現(xiàn)以下的問題:

  貨車第一天的運輸量與運輸次數(shù)的比是多少? (16 : 2)

  貨車第二天的運輸量與運輸次數(shù)的比是多少?(32 :4)

  貨車第二天的運輸量與第一天運輸量的比是多少?(32 :16)

 。◣煾鶕(jù)學生的回答,將答案一一貼或?qū)懹诤诎澹?/p>

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、認識比例及各部分名稱。

  談話:學習數(shù)學,我們不僅要善于提問,還要善于觀察,F(xiàn)在就請你觀察這兩個比(16 :2;32 :4)看能發(fā)現(xiàn)什么?(學生會發(fā)現(xiàn)比值相等)

  思考:這個比值所表示的實際意義是什么?(每次的運輸量)

  既然它們的比值相等,那我們可以用什么符號將兩個比連接起來?

  學生用等號連接,并請學生把這個式子讀一下。

  試一試:剩下的這些比中,哪兩個也能用等于號連接?在你的練習本上寫寫看。(學生獨立完成)

  介紹:像這樣表示兩個比相等的式子,數(shù)學上就把它叫做比例。我們知道,比有前項、后項,比例的各部分也有自己的名字。組成比例的四個數(shù)叫做比例的項,像16、4位于兩端的兩項叫做比例的外項,2、32位于中間的兩項叫做比例的內(nèi)項。比例,也可以寫成分數(shù)形式。

  學生先把2 :16=4 :32這個比例寫成分數(shù)形式,再同桌倆交流它的內(nèi)項外項分別是誰。

  自學提示:同學們表現(xiàn)得都特別棒,現(xiàn)在請你看課本自主練習第1題,能否根據(jù)剛才所學知識解決。(學生獨立完成)

  2、比和比例有什么區(qū)別?

  比

  4︰6

  比例

  2︰3=4︰6

  3.判斷下面兩個比能否組成比例?

  6∶9 和 9∶12

  總結(jié)方法:判斷兩個比能不能組成比例,要看它們的比值是否相等。

  4.談話引入:剛才,你們是根據(jù)比例的意義先求出比值再判斷兩個比能否組成比例。我不是這樣想的,可能很快就判斷好了,想知道其中的秘密嗎?其實秘密就藏在比例的兩個內(nèi)項和兩個外項之中,它們兩者之間可是存在著一種奇妙的關(guān)系,你想揭穿這個秘密嗎?

  那就請你以16:2=32:4為例,通過看一看,想一想,算一算等方法,試試能不能發(fā)現(xiàn)這個關(guān)系!

  5、學生先獨立思考,再小組交流,探究規(guī)律。

  出示研究方案:

 、儆^察比例的兩個內(nèi)項與兩個外項,用算一算的.方法,找同學說一說,你發(fā)現(xiàn)了什么。

 、谑遣皇敲恳粋比例的兩個外項與兩個內(nèi)項都具有這種規(guī)律,請你再舉出這樣的例子來。

 、弁ㄟ^以上研究,你發(fā)現(xiàn)了什么?

  6、全班交流。

 。1)哪個小組愿意將你們的發(fā)現(xiàn)與大家分享?

 。2)還有其他發(fā)現(xiàn)嗎?

 。3)你們組所發(fā)現(xiàn)的是不是個偶然現(xiàn)象呢?咱們最好是怎么辦?

  7、驗證發(fā)現(xiàn),共享成功。

  師:對,舉例驗證,這可是一種非常好的數(shù)學方法。那現(xiàn)在,咱們可以利用黑板上的比例,也可以自己組一個新的比例,驗證看看,是不是所有的比例都是兩個外項的積等于兩個內(nèi)項的積。(學生獨立驗證)

  8、利用一個比例通過課件形象的展示兩個外項的積等于兩個內(nèi)項的積。

  9、小結(jié):不錯,看來同學們很會觀察,很會思考,很會驗證,自己發(fā)現(xiàn)了比例的一條規(guī)律。也就是,在比例里,兩個外項的積等于兩個內(nèi)項的積。數(shù)學上我們把這條規(guī)律,叫做比例的基本性質(zhì)。這也是我們在小學階段,在繼分數(shù)、比的基本性質(zhì)之后學習的第三個基本性質(zhì)。運用它,我們可以解決許多數(shù)學問題。

  10、比例的基本性質(zhì)的應(yīng)用:

  應(yīng)用比例的基本性質(zhì),判斷下面兩個比能不能組成比例.

  6∶3 和 8∶5

  方法:a、先假設(shè)這兩個比能組成比例

  b、說出寫出的比例的內(nèi)項和外項分別是幾,再分別算出外項和內(nèi)項的積。

  c、根據(jù)比例的基本性質(zhì)判斷組成的比例是否正確。

  (二)自主練習,拓展提升

  1、判斷下面每組中兩個比能否組成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  讓學生根據(jù)比例的意義進行判斷,教師結(jié)合回答板書:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、連線:自主練習第3題。

  3、填空:自主練習第6題。

  4、自主練習第10題:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四個數(shù)可以組成比例嗎?把組成的比例寫出來(能寫幾個寫幾個)。

  2、3、4 和 6

  因為 2 × 6 = 3 × 4 所以這四個數(shù)可以組成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  練習時,給學生充足的時間讓學生獨立完成,然后交流溝通。

 。ㄈ┗仡櫩偨Y(jié)

  在這節(jié)課中你又有什么新的收獲?

  《比例的意義》教案 篇12

  教學過程:

  一、復(fù)習鋪墊

  1、下面兩種量是不是成正比例?為什么?

  購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、導入新課:這節(jié)課我們繼續(xù)學習常見的數(shù)量關(guān)系中的另一種特征成反比例的量。

  2、教學P42例3。

 。1)引導學生觀察上表內(nèi)數(shù)據(jù),然后回答下面問題:

  A、表中有哪兩種量?這兩種量相關(guān)聯(lián)嗎?為什么?

  B、水的高度是否隨著底面積的變化而變化?怎樣變化的?

  C、表中兩個相對應(yīng)的數(shù)的.比值各是多少?一定嗎?兩個相對應(yīng)的數(shù)的積各是多少?你能從中發(fā)現(xiàn)什么規(guī)律嗎?

  D、這個積表示什么?寫出表示它們之間的數(shù)量關(guān)系式

  (2)從中你發(fā)現(xiàn)了什么?這與復(fù)習題相比有什么不同?

  A、學生討論交流。

  B、引導學生回答:

  (3)教師引導學生明確:因為水的體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關(guān)系,高度和底面積叫做成反比例的量。

 。4)如果用字母x和y表示兩種相關(guān)的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:xy=k(一定)

  三、鞏固練習

  1、想一想:成反比例的量應(yīng)具備什么條件?

  2、判斷下面每題中的兩個量是不是成反比例,并說明理由。

 。1)路程一定,速度和時間。

 。2)小明從家到學校,每分走的速度和所需時間。

 。3)平行四邊形面積一定,底和高。

 。4)小林做10道數(shù)學題,已做的題和沒有做的題。

 。5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。

 。6)你能舉一個反比例的例子嗎?

  四、全課小節(jié)

  這節(jié)課我們學習了成反比例的量,知道了什么樣的兩個量是成反比例的兩個量,也學會了怎樣判斷兩種量是不是成反比例。

  五、課堂練習

  P45~46練習七第6~11題。

  教學目的:

  1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。

  2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯(lián)系和發(fā)展變化的規(guī)律。

  3、初步滲透函數(shù)思想。

  教學重點:引導學生總結(jié)出成反比例的量,是相關(guān)的兩種量中相對應(yīng)的兩個數(shù)積一定,進而抽象概括出成反比例的關(guān)系式。

  教學難點:利用反比例的意義,正確判斷兩個量是否成反比例。

  《比例的意義》教案 篇13

  教學內(nèi)容:

  比例的意義和基本性質(zhì)。

  教學要求:

  使學生理解比例的意義,會用比例的意義正確地判斷兩個比是否 成比例,使學生理解比例的基本性質(zhì)。

  教學重點:

  理解比例的意義和基本性質(zhì)。

  教學難點:

  靈活地判斷兩個比是否組成比例。

  教 具:

  投影機等。

  教學過程:

  一、復(fù)習。

  1、什么叫做比?什么叫做比值?

  2、求出下面各比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、提示課題,引入新課。

  1、引入:如果有兩個比是相等的,那么這兩個相等的比以叫做什么?它有什么樣的性質(zhì)?這節(jié)課我們就一起來研究它。

  2、引入新課。

  三、導演達標。

  1、教學比例的意義。

 。1)引導學生觀察課本的表格后回答:

  A、第一次所行駛的路程和時間的比是什么?

  B、第二次所行駛的路程和時間的'比是什么?

  C、這兩次比的比值各是什么?它們有什么關(guān)系?

  板書: 80:2=200:5 或 =

 。2)引出比例的意義。

  A、表示兩個比相等的式子叫做比例。

  B、討論:組成比例必須具備什么條件?如何判斷兩個比是不是組成比例的?比和比例有什么區(qū)別?

  C、判斷兩個比能不能組成比例,關(guān)鍵是看兩個比的比值是否相等。

  D、做一做。(先練習,后講評)

  2、教學比例的基本性質(zhì)。

 。1)看書后回答:

  A、什么叫做比例的項?

  B、什么叫做比例的外項、內(nèi)項?

 。2)引導學生總結(jié)規(guī)律?

  先讓學生計算,兩個外項的積,再計算兩個內(nèi)項的積,最后讓學生總結(jié)出比例的基本性質(zhì),然后強調(diào),如果把比例寫成分數(shù)形式,比例的基本性質(zhì)就是等號兩端的分子和分母分別交叉相乘的積相等。

  3、練習:判斷下面的哪組比可以組成比例。

  6:9和9:12 1.4:2和7:10

  四、鞏固練習:第一、二題。(指名回答,集體訂正)

  五、總結(jié):今天我們學習了什么?

  比例的意義和比例的基本性質(zhì)及怎樣判斷兩個比是否可以組成比例的方法。

  六、作業(yè):第二題。

  《比例的意義》教案 篇14

  設(shè)計說明

  本節(jié)課的教學內(nèi)容包含“比例的意義和比例的基本性質(zhì)”兩部分。本節(jié)課的內(nèi)容是這個單元的起始,屬于概念教學,是為以后解比例,講解正比例、反比例做準備的。學生學好這部分的知識,不僅可以初步接觸函數(shù)的思想,還可以解決日常生活中的一些具體問題。遵循“自主探索與合作交流”的《數(shù)學課程標準》理念,本節(jié)課在教學設(shè)計上有以下特點:

  1.重視有效學習情境的創(chuàng)造。

  新課伊始,通過談話激活學生對國旗的已有認識,引出本節(jié)課要用的中國國旗的三種不同規(guī)格的相關(guān)數(shù)據(jù),激發(fā)學生的學習興趣,使學生在熟悉的現(xiàn)實情境中,情緒飽滿地進入到對比例知識的探究學習中。

  2.重視引導學生自主探究。

  教學比例的意義時,先引導學生依據(jù)三面國旗的長與寬寫出多個比,再引導學生發(fā)現(xiàn)它們的比值相等,可以寫成一個等式,引出比例,最后引導學生通過自己的分析、思考,進行歸納總結(jié)出比例的意義。

  3.重視引導學生合作交流。

  《數(shù)學課程標準》指出:“合作交流是學生學習數(shù)學的重要方式!睘榇,我們在教學中,不但要引導學生進行自主探究,還要引導學生進行合作交流。以“比例的基本性質(zhì)”的探究為例,在教學中,通過小組合作交流,讓學生思維互補,既有利于知識的學習,又有利于學生概括能力及語言表達能力的培養(yǎng)。

  課前準備

  教師準備 PPT課件

  教學過程

  ⊙滲透情感,導入新課

  1.課件出示國旗畫面,學生觀察,激發(fā)愛國情操。

  (天安門升國旗儀式、校園升旗儀式、教室場景)

  師:這三幅不同的場景都有共同的標志——五星紅旗,五星紅旗是中華人民共和國的象征;這些國旗有大有小,你知道這些國旗的長和寬分別是多少嗎?

  2.課件出示國旗的長和寬,并提出問題。

  天安門升旗儀式上的.國旗:長5 m,寬 m。

  操場升旗儀式上的國旗:長2.4 m,寬1.6 m。

  教室里的國旗:長60 cm,寬40 cm。

  師:這些國旗的大小不一,是不是國旗想做多大就做多大呢?是不是這中間隱含著什么共同的特點呢?

  3.導入新課。

  師:每面國旗的大小不一樣,但是它們的長和寬中卻隱含著共同的特點,是什么呢?這節(jié)課我們就結(jié)合國旗的知識來學習比例的意義和基本性質(zhì)。

  (板書課題:比例的意義和基本性質(zhì))

  設(shè)計意圖:通過談話,激發(fā)學生的愛國情感和求知欲,在加強學生對國旗知識了解的同時,有效地引入學習資源,為學生探究比例的意義和基本性質(zhì)提供第一手資料。

  ⊙合作交流,探究新知

  1.教學比例的意義。

  (1)自主嘗試。

  課件出示教材40頁主題圖,根據(jù)圖中給出的數(shù)據(jù)分別寫出不同場景中國旗的長和寬的比,并求出比值。

  (2)匯報、交流。

  預(yù)設(shè)

  生1:天安門升旗儀式上的國旗。

  長∶寬=5∶=

  生2:操場升旗儀式上的國旗。

  長∶寬=2.4∶1.6=

  生3:教室里的國旗。

  長∶寬=60∶40=

  (3)感知比例的意義。

  觀察寫出的比,想一想,這些比能用等號連接嗎?為什么?用等號連接的兩個比的式子可以怎樣寫?

  預(yù)設(shè)

  生1:可以用等號連接,因為它們的比值相等。

  “2.4∶1.6=”和“60∶40=”可以寫作“2.4∶1.6=60∶40”。

  生2:可以用等號連接,兩個比的比值相等,說明這兩個比也是相等的。

  生3:根據(jù)比與分數(shù)的關(guān)系,“2.4∶1.6=60∶40”

  也可以寫成“=”。

  《比例的意義》教案 篇15

  1.使學生初步認識正比例的意義、掌握正比例意義的變化規(guī)律。

  2.學會判斷成正比例關(guān)系的量。

  3.進一步培養(yǎng)學生觀察、分析、概括的能力。

  教學重點和難點

  理解正比例的意義,掌握正比例變化的規(guī)律。

  教學過程設(shè)計

  (一)復(fù)習準備

  請同學口述三量關(guān)系:

  (1)路程、速度、時間;(2)單價、總價、數(shù)量;(3)工作效率、時間、工作總量。

  (學生口述關(guān)系式、老師板書。)

  (二)學習新課

  今天我們進一步研究這些數(shù)量關(guān)系中的一些特征,請同學們回答老師的問題。

  幻燈出示:

  一列火車1小時行60千米,2小時行多少千米?3小時、4小時、5小時……各行多少千米?

  生:60千米、120干米、180千米……

  師:根據(jù)剛才口答的問題,整理一個表格。

  出示例1。(小黑板)

  例1 一列火車行駛的時間和所行的路程如下表。

  師:(看著表格)回答下面的問題。表中有幾種量?是什么?

  生:表中有兩種量,時間和路程。

  師:路程是怎樣隨著時間變化的?

  生:時間1小時,路程是60千米;2小時,路程為120千米;3小時,路程為180千米……

  師:像這樣一種量變化,另一種量也隨著變化,這兩種量就叫做兩種相關(guān)聯(lián)的量。

  (板書:兩種相關(guān)聯(lián)的量)

  師:表中誰和誰是兩種相關(guān)聯(lián)的量?

  生:時間和路程是兩種相關(guān)聯(lián)的量。

  師:我們看一看他們之間是怎樣變化的?

  生:時間由1小時變2小時,路程由60千米變?yōu)?20千米……時間擴大了,路程也隨著擴大,路程隨著時間的變化而變化。

  師:現(xiàn)在我們從后往前看,時間由8小時變?yōu)?小時、6小時、4小時……路程又是如何變化的?

  生:路程由480千米變?yōu)?20千米、360千米……

  師:從上面變化的情況,你發(fā)現(xiàn)了什么樣的規(guī)律?(同桌進行討論。)

  生:時間從小到大,路程也隨著從小到大變化;時間從大到小,路程也隨著從大到小變化。

  師:我們對比一下老師提出的'兩個問題,互相討論一下,這兩種變化的原因是什么?

  (分組討論)

  師:請同學發(fā)表意見。

  生:第一題時間擴大了,行的路程也隨著擴大;第二題時間縮小了,所行的路程也隨著縮短了。

  師:我們對這種變化規(guī)律簡稱為“同擴同縮”。(板書)讓我們再看一看,它們擴大縮小的變化規(guī)律是什么?

  師:根據(jù)時間和路程可以求出什么?

  生:可以求出速度。

  師:這個速度是誰與誰的比?它們的結(jié)果又叫什么?

  生:這個速度是路程和時間的比,它們的結(jié)果是比值。

  師:這個60實際是什么?變化了嗎?

  生:這個60是火車的速度,是路程和時間的比值,也是路程和時間的商,速度不變。

  駛多少千米,速度都是60千米,這個速度是一定的,是固定不變的量,我們簡稱為定量。

  師:誰是定量時,兩種相關(guān)聯(lián)的量同擴同縮?

  生:速度一定時,時間和路程同擴同縮。

  師:對。這兩種相關(guān)聯(lián)的量的商,也就是比值一定時,它們同擴同縮。我們看著表再算一算表中路程與時間相對應(yīng)的商是不是一定。

  (學生口算驗證。)

  生:都是60千米,速度不變,符合變化的規(guī)律,同擴同縮。

  師:同學們總結(jié)得很好。時間和路程是兩種相關(guān)聯(lián)的量,路程是隨著時間的變化而變化的:時間擴大,路程也隨著擴大;時間縮小,路程也隨著縮小。擴大和縮小的規(guī)律是:路程和時間的比的比值總是一樣的。

  師:誰能像老師這樣敘述一遍?

  (看黑板引導學生口述。)

  師:我們再看一題,研究一下它的變化規(guī)律。

  出示例2。(小黑板)

  例2 某種花布的米數(shù)和總價如下表:

  (板書)

  按題目要求回答下列問題。(幻燈)

  (1)表中有哪兩種量?

  (2)誰和誰是相關(guān)聯(lián)的量?關(guān)系式是什么?

  (3)總價是怎樣隨著米數(shù)變化的?

  (4)相對應(yīng)的總價和米數(shù)的比各是多少?

  (5)誰是定量?

  (6)它們的變化規(guī)律是什么?

  生:(答略)

  師:比較一下兩個例題,它們有什么共同點?

  生:都有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化。

  師:對。兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。這就是今天我們學習的新內(nèi)容。(板書課題:正比例的意義)

  師:你能按照老師說的敘述一下例1中兩個相關(guān)聯(lián)的量之間的關(guān)系嗎?

  生:路程隨著時間的變化而變化,它們的比值(也就是速度)一定,所以路程和時間是成正比例的量,它們的關(guān)系是正比例關(guān)系。

  師:想一想例2,你能敘述它們是不是成正比例的量?為什么?(兩人互相試說。)

  師:很好。請打開書,看書上是怎樣總結(jié)的?

  (生看書,并畫出重點,讀一遍意義。)

  師:如果表中第一種量用x表示,第二種量用y表示,定量用k表示,誰能用字母表示成正比例的兩種相關(guān)聯(lián)的量與定量的關(guān)系?

  師:你能舉出日常生活中成正比例關(guān)系的兩種相關(guān)聯(lián)的量的例子嗎?

  生:(答略)

  師:日常生活和生產(chǎn)中有很多相關(guān)聯(lián)的量,有的成正比例關(guān)系,有的是相關(guān)聯(lián),但不成比例關(guān)系。所以判斷兩種相關(guān)聯(lián)的量是否成正比例關(guān)系,要抓住相對應(yīng)的兩個量是否商(比值)一定,只有商(比值)一定時,才能成正比例關(guān)系。

  (三)鞏固反饋

  1.課本上的“做一做”。

  2.幻燈出示題,并說明理由。

  (1)蘋果的單價一定,買蘋果的數(shù)量和總價( )。

  (2)每小時織布米數(shù)一定,織布總米數(shù)和時間( )。

  (3)小明的年齡和體重( )。

  (四)課堂總結(jié)

  師:今天主要講的是什么內(nèi)容?你是如何理解的?

  (生自己總結(jié),舉手發(fā)言。)

  師:打開書,并說出正比例的意義。有什么不明白的地方提出來。

  (五)布置作業(yè)

  (略)

  課堂教學設(shè)計說明

  第一部分:復(fù)習三量關(guān)系,為本節(jié)內(nèi)容引路。

  第二部分:新課從創(chuàng)設(shè)正比例表象入手,引導學生主動、自覺地觀察、分析、概括,緊緊圍繞判斷正比例的兩種相關(guān)聯(lián)的兩個量、商一定展開思路,結(jié)合例題中的數(shù)據(jù)整理知識,發(fā)現(xiàn)規(guī)律,由討論表象到抽象概念,使知識得到深化。

  第三部分:鞏固練習。幫助學生鞏固新知識,由此驗證學生對知識的理解和掌握情況,幫助學生掌握判斷方法。最后指導學生看書,抓住本節(jié)重點,突破難點。安排適當?shù)木毩曨},在反復(fù)的練習中,加強概念的理解,牢牢掌握住判斷的方法。合理安排作業(yè),進一步鞏固所學知識。

  總之,在設(shè)計教案的過程中,力爭體現(xiàn)教師為主導,學生為主體的精神,使學生認識結(jié)構(gòu)不斷發(fā)展,認識水平不斷提高,做到在加強雙基的同時發(fā)展智力,培養(yǎng)能力,并為以后學習打下良好的基礎(chǔ)。

  板書設(shè)計

  《比例的意義》教案 篇16

  設(shè)計說明

  本節(jié)課教學的正比例是數(shù)學中比較重要的兩個量的關(guān)系,它比較抽象、難理解,是今后學習反比例及初中學習函數(shù)知識的基礎(chǔ)。結(jié)合本節(jié)課的教學內(nèi)容及學情實際,本節(jié)課在教學設(shè)計上主要體現(xiàn)以下幾個方面:

  1.有效利用教材圖表,增強對相關(guān)聯(lián)的量的形象感受。

  教學伊始,在復(fù)習鋪墊的基礎(chǔ)上,引導學生仔細觀察圖表。在觀察中,使學生發(fā)現(xiàn)正方形的周長和面積隨著邊長的變化而變化及變化規(guī)律,充分體會到什么是相關(guān)聯(lián)的量,為進一步學習正比例知識打下基礎(chǔ)。

  2.科學調(diào)動多種感官,增強對知識形成過程的體驗。

  在數(shù)學教學過程中,教師如果能夠有效地調(diào)動學生的多種感官參與學習活動,讓學生利用更多的大腦通路來處理學習信息,建立起對知識與技能的深刻記憶,成為學習的主人,就能促進學生提高學習效率。本設(shè)計努力為學生創(chuàng)設(shè)動眼、動手、動腦、動口的機會,使學生在觀察、操作、分析、比較、討論、交流中,不斷探究相關(guān)聯(lián)的兩個量之間的關(guān)系,逐漸發(fā)現(xiàn)其中的規(guī)律,體會正比例的意義。

  3.體會數(shù)學與生活的密切聯(lián)系,關(guān)注對正比例意義的理解。

  因為正比例表示的是兩個相關(guān)聯(lián)的量之間的關(guān)系,是學生接下來學習反比例及今后進一步學習函數(shù)知識的重要基礎(chǔ)。所以,本設(shè)計十分重視學生對知識的理解。通過創(chuàng)設(shè)具體情境,激發(fā)學生的學習興趣,使學生積極主動地思考并結(jié)合熟悉的情境及數(shù)量關(guān)系理解正比例的意義。

  課前準備

  教師準備 多媒體課件

  教學過程

  第1課時 正比例的認識

  ⊙復(fù)習導入

  1.引導回顧。

  師:什么是相關(guān)聯(lián)的量?請舉例說明。

  (學生匯報)

  2.導入新課。

  師:兩個相關(guān)聯(lián)的量之間肯定存在著某種關(guān)系,我們今天要學習的正比例就是表示兩個相關(guān)聯(lián)的量之間的關(guān)系的,這種關(guān)系是怎樣的呢?讓我們一起進入今天的學習。

  設(shè)計意圖:通過回顧舊知,進一步理解相關(guān)聯(lián)的量,為在新情境中探究兩個相關(guān)聯(lián)的量之間的變化規(guī)律作鋪墊。

  ⊙探究新知

  1.借助圖表,進一步感知相關(guān)聯(lián)的量。

  面積/cm2

  小組合作探究,交流下面的問題:

  (1)上面是正方形周長與邊長、面積與邊長之間的變化情況,把表格填寫完整,并說說你分別發(fā)現(xiàn)了什么。

  (2)同桌合作填表。

  (3)仔細觀察表格,討論:正方形的周長是怎樣隨著邊長的變化而變化的?正方形的面積是怎樣隨著邊長的'變化而變化的?

  預(yù)設(shè)

  生1:我從表中發(fā)現(xiàn)正方形的邊長增加,周長也增加。

  生2:我從表中發(fā)現(xiàn)正方形的邊長擴大到原來的幾倍,周長就隨著擴大到原來的幾倍。

  生3:我從表中發(fā)現(xiàn)正方形的周長總是邊長的4倍。

  生4:我從表中發(fā)現(xiàn)正方形的邊長增加,面積也增加。

  ……

  (4)比較:正方形的周長與邊長的變化規(guī)律和正方形的面積與邊長的變化規(guī)律有什么異同?

  預(yù)設(shè)

  生1:相同點是都隨著邊長的增加而增加。

  生2:不同點是周長隨邊長變化的規(guī)律與面積隨邊長變化的規(guī)律不同。

  生3:在變化過程中,正方形的周長與邊長的比值一定,都是4。

  生4:在變化過程中,正方形的面積與邊長的比值是一個不確定的值。

  《比例的意義》教案 篇17

  教學目標:

  知識與技能:

  1.結(jié)合豐富的實例,認識反比例。

  2.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。

  過程與方法:

  通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認識反比例。

  情感態(tài)度價值觀:

  培養(yǎng)學生自主、合作學習、探索新知的能力,激發(fā)學習數(shù)學的熱情。感受反比例關(guān)系在生活中的廣泛應(yīng)用。初步滲透函數(shù)思想。

  教學重點:

  認識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成反比例。

  教學難點:

  認識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成反比例。

  教具準備:

  電腦課件

  教學過程:

  一、復(fù)習引入

  1、計算

  2、判斷下面各題中的兩種量是否成正比例?為什么?

  (1)文具盒的單價一定,買文具盒的個數(shù)和總價。

  (2)一堆貨物一定,運走的量和剩下的量。

  (3)汽車行駛的速度一定,行駛的路程和時間。

  3、說說什么是正比例。

  師:大家對正比例知識理解掌握得非常好,接下來我們就該學習什么了?

  二、出示學習目標

  1.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。

  2.通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認識反比例。

  3.培養(yǎng)學生探索研究的能力,感受反比例關(guān)系在生活中的廣泛應(yīng)用。

  三、指導自學

  師:給你們講個小故事:

  有一個貪婪的財主,拿了一匹上好的布料準備做一頂帽子,到了裁縫店,覺得這樣好的布料做一頂帽子似乎浪費了,于是問裁縫:“這匹布可以做兩頂帽子嗎?”裁縫看了看財主一眼,說:“可以。”財主見他回答得那么爽快,心想,這裁縫肯定是從中占了些什么便宜,于是又問,“那做3頂帽子嗎?”裁縫依然很爽快地說:“行!”這時,財主更加疑惑了,嘀咕著:“多好的一匹布啊,那我做4頂可以嗎”“行!”裁縫仍然很快地回答。經(jīng)過一翻的較量后,財主最后問:“那我想做10頂帽子可以嗎?”裁縫遲疑了一會,然后打量著財主,慢慢的說:“可以的!边@時財主才放下心來,心想:這匹布料如果只做一頂帽子,那就便宜裁縫了。瞧!這不讓我說到10頂了吧。我還真聰明!嘿嘿??

  過了幾天,財主到了裁縫店取帽子,結(jié)果一看,頓時傻了眼:10頂?shù)拿弊有〉弥荒艽髟谑种割^上了!

  學習提示: 獨立思考?

  1、“為什么同一匹布,裁縫說做1頂帽子,2頂帽子,10頂都可以呢?”

  2、故事中相關(guān)的數(shù)量關(guān)系式是什么?哪兩個是變化的量,怎樣變?另一個是什么量?有什么特點?

  合作學習小組討論上述的問題。看書合作學習

  1、把25頁例

  2、例3的表格補充完整。

  2、每個表格中有哪些變量?有不變的量嗎?分別是什么?變化有什么規(guī)律?相關(guān)的數(shù)量關(guān)系式是什么?

  3、三個數(shù)量關(guān)系式有相同點嗎?是什么?你能把這種變化規(guī)律用一個含有字母的關(guān)系式來表示嗎?

  4、你知道什么是反比例嗎?

  四、學生自學

  五、檢查自學效果

  讓學生說說自學要求中的內(nèi)容。

  師歸納:兩種相關(guān)聯(lián)的量,一種量隨著另一種量的變化而變化,在變化過程中兩種量的積一定,那么這兩種量成反比例。

  六、引導更正,指導運用

  你們還找出類似這樣關(guān)系的量來嗎?”

  學生:要走一段路,速度越慢(快),用的時間就越多(少)運一堆貨物,每次運的越多(少),運的次數(shù)就越。ǘ啵┌倜踪惻,路程100米不變,速度和時間是反比例; 排隊做操,總?cè)藬?shù)不變,排隊的行數(shù)和每行的人數(shù)是反比例; 長方體的`體積一定,底面積和高是反比例。

  七、當堂訓練 基礎(chǔ)練習

  1、填空

  兩種 _____ 的量,一種量隨著另一種量變化,如果這兩種量中相對應(yīng)的兩個數(shù)的______,這兩種量叫做成反比例的量,它們的關(guān)系叫做_______關(guān)系。

  2、判斷下面每題中的兩種量是不是成反比例,并說明理由。

 。1)煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。

 。2)張伯伯騎自行車從家到縣城,騎自行車的速度和所需的時間。

 。3)生產(chǎn)電視機的總臺數(shù)一定,每天生產(chǎn)的臺數(shù)和所用的天數(shù)。

  (4)圓柱體的體積一定,底面積和高。

 。5)小林做10道數(shù)學題,已做的題和沒有做的題。

 。6)長方形的長一定,面積和寬。

 。7)平行四邊形面積一定,底和高。提高練習

  1、一長方形的周長為20厘米,若長是9厘米,則寬是1厘米。請你填寫下表,并判斷這個長方形在周長不變的情況下,長和寬是否成反比例,并說明理由。長/cm

  四、小結(jié)

  通過這節(jié)課的學習,你有什么收獲?

  這節(jié)課我們學習了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學會了怎樣判斷兩種量是不是成反比例。板書:反比例

  相關(guān)聯(lián),一個量變化,另一個量也隨著變化積一定

  xy=k(一定)

  《比例的意義》教案 篇18

  教學目的:

  1、使學生學會解比例的方法,進一步理解和掌握比例的基本性質(zhì)。

  2、通過合作交流、嘗試練習,提高學生運用比例的基本性質(zhì)解比例的能力。

  3、培養(yǎng)學生的知識遷移的能力,增強學生的合作意識。

  教學重點:使學生掌握解比例的方法,學會解比例。

  教學難點:引導學生根據(jù)比例的基本性質(zhì),將比例改寫成兩個內(nèi)項的積等于兩個外項積的形式,即已學過的含有未知數(shù)的等式。

  教學過程:

  一、回顧舊知,復(fù)習鋪墊

  1、上節(jié)課我們學習了一些比例的知識,誰能說一說什么叫做比例?比例的基本性質(zhì)是什么?應(yīng)用比例的.基本性質(zhì)可以做什么?

  2、判斷下面每組中的兩個比是否能組成比例?為什么?

  6:3和8:4

  3、這節(jié)課我們繼續(xù)學習有關(guān)比例的知識,學習解比例。(板書課題)

  二、引導探索,學習新知

  1、什么叫解比例?

  我們知道比例共有四項,如果知道其中的任何三項,就可以求出這個比例中的另外一個未知項。求比例中的未知項,叫做解比例。解比例要根據(jù)比例的基本性質(zhì)來解。

  2、教學例2。

 。1)把未知項設(shè)為X。解:設(shè)這座模型的高是X米。

 。2)根據(jù)比例的意義列出比例:X:320=1:10

 。3)讓學生指出這個比例的外項、內(nèi)項,并說明知道哪三項,求哪一項。

  根據(jù)比例的基本性質(zhì)可以把它變成什么形式?3x=8×15。

  這變成了什么?(方程。)

  教師說明:這樣解比例就變成解方程了,利用以前學過的解方程的方法就可以求出未知數(shù)X的值。因為解方程要寫“解:”,所以解比例也應(yīng)寫“解:”。

  (4)學生說,教師板書解比例的過程。

  教師:從剛才解比例的過程,可以看出,解比例可以根據(jù)比例的基本性質(zhì)把比例變成方程,然后用解方程的方法來求未知數(shù)x。

  3、教學例3。

  出示例3:解比例=

  提問:“這個比例與例2有什么不同?”(這個比例是分數(shù)形式。)

  這種分數(shù)形式的比例也能根據(jù)比例的基本性質(zhì),變成方程來求解嗎?

  學生回答后,教師說明在寫方程時,含有未知數(shù)的積通常寫在等號的左邊,然后板書:1.5X=2.5×6

  讓學生在課本上填出求解過程。解答后,讓他們說一說是怎樣解的。

  4、解比例的過程。

  剛才我們學習了解比例,大家回憶一下,解比例首先要做什么?(根據(jù)比例的基本性質(zhì)把比例變成方程。)

  變成方程以后,再怎么做?(根據(jù)以前學過的解方程的方法求解。)

  從上面的過程可以看出,在解比例的過程中哪一步是新知識?(根據(jù)比例的基本性質(zhì)把比例變成方程。)

  5、p35“做一做”。學生獨立解答,訂正時,讓學生說說是怎么做的。

  三、鞏固深化,拓展思維

  p37第7題。

  四、全課,提高認識

  什么叫解比例?解比例的根據(jù)是什么?解比例的書寫格式應(yīng)注意什么?

  五、課堂練習,輔助消化

  p37~38第8~11題。

  六、課外補充,拓展延伸

  1、p38第12、13題。

  2、4:8=12:24,如果將第二項減少1,要使比例成立,則第四項減少多少?

  3、把兩個比值都是的比組成比例,已知比例的兩個內(nèi)項都是15,請分別求出這個比例的兩個外項,并寫出比例。

  《比例的意義》教案 篇19

  教學內(nèi)容:P35~37 解比例

  教學目的:

  1、使同學學會解比例的方法,進一步理解和掌握比例的基本性質(zhì)。

  2、通過合作交流、嘗試練習,提高同學運用比例的基本性質(zhì)解比例的能力。

  3、培養(yǎng)同學的知識遷移的能力,增強同學的合作意識。

  教學重點:使同學掌握解比例的方法,學會解比例。

  教學難點:引導同學根據(jù)比例的基本性質(zhì),將比例改寫成兩個內(nèi)項的積等于兩個外項積的形式,即已學過的含有未知數(shù)的等式。

  教學過程:

  一、回顧舊知,復(fù)習鋪墊

  1、上節(jié)課我們學習了一些比例的知識,誰能說一說什么叫做比例?比例的基本性質(zhì)是什么?應(yīng)用比例的基本性質(zhì)可以做什么?

  2、判斷下面每組中的兩個比是否能組成比例?為什么?

  6:3和8:4 : 和 :

  3、這節(jié)課我們繼續(xù)學習有關(guān)比例的知識,學習解比例。(板書課題)

  二、引導探索,學習新知

  1、什么叫解比例?

  我們知道比例共有四項,假如知道其中的任何三項,就可以求出這個比例中的另外一個未知項。求比例中的未知項,叫做解比例。解比例要根據(jù)比例的基本性質(zhì)來解。

  2、教學例2。

  (1)把未知項設(shè)為X。解:設(shè)這座模型的高是X米。

 。2)根據(jù)比例的意義列出比例:X:320=1:10

  (3)讓同學指出這個比例的外項、內(nèi)項,并說明知道哪三項,求哪一項。

  根據(jù)比例的基本性質(zhì)可以把它變成什么形式?3x=815。

  這變成了什么?(方程。)

  教師說明:這樣解比例就變成解方程了,利用以前學過的解方程的方法就可以求出未知數(shù)X的值。因為解方程要寫“解:”,所以解比例也應(yīng)寫“解:”。

 。4)同學說,教師板書解比例的過程。

  教師:從剛才解比例的過程,可以看出,解比例可以根據(jù)比例的基本性質(zhì)把比例變成方程,然后用解方程的方法來求未知數(shù)x。

  3、教學例3。

  出示例3:解比例 =

  提問:“這個比例與例 2有什么不同?”(這個比例是分數(shù)形式。)

  這種分數(shù)形式的比例也能根據(jù)比例的基本性質(zhì),變成方程來求解嗎?

  同學回答后,教師說明在寫方程時,含有未知數(shù)的積通常寫在等號的左邊,然后板書:1.5X=2.56

  讓同學在課本上填出求解過程。解答后,讓他們說一說是怎樣解的。

  4、總結(jié)解比例的過程。

  剛才我們學習了解比例,大家回憶一下,解比例首先要做什么?(根據(jù)比例的基本性質(zhì)把比例變成方程。)

  變成方程以后,再怎么做?(根據(jù)以前學過的解方程的方法求解。)

  從上面的過程可以看出,在解比例的過程中哪一步是新知識?(根據(jù)比例的'基本性質(zhì)把比例變成方程。)

  5、P35“做一做”。同學獨立解答,訂正時,讓同學說說是怎么做的。

  三、鞏固深化,拓展思維

  P37第7題。

  四、全課小結(jié),提高認識

  什么叫解比例?解比例的根據(jù)是什么?解比例的書寫格式應(yīng)注意什么?

  五、課堂練習,輔助消化

  P37~38第8~11題。

  六、課外補充,拓展延伸

  1、P38第12、13題。

  2、4:8=12:24,假如將第二項減少1,要使比例成立,則第四項減少多少?

  3、把兩個比值都是 的比組成比例,已知比例的兩個內(nèi)項都是15,請分別求出這個比例的兩個外項,并寫出比例。

  4、一個比例的四個項都是大于0的整數(shù),它的兩個比的比值都是 ,且第一項比第二項少3,第三項是第一項的3倍。請寫出這個比例。

  《比例的意義》教案 篇20

  教學目標:

  1、通過正比例和反比例的對比練習,加深對正比例和反比例意義的理解,提高判斷能力。

  2、通過討論與交流,體會正、反比例的知識與日常生活的密切聯(lián)系,并利用正、反比例的意義解決實際問題。

  教學重點:

  進一步掌握正、反比例關(guān)系的意義。

  教學難點:

  正確應(yīng)用比例知識解答基本的正、反比例應(yīng)用題。教具學具:課件

  教學過程:

  一,分層次設(shè)計練習。

 。ㄒ唬、第一層次,基本性應(yīng)用練習的設(shè)計

  1、判斷下面每題中的兩種量成什么比例關(guān)系。

 。1)、一個因數(shù)一定,積和另一個因數(shù); 積一定,一個因數(shù)和另一個因數(shù)。

 。2)、平行四邊形的面積一定,它的底和高。

  (3)、貨物的總噸數(shù)一定,每次運貨的噸數(shù)和次數(shù)。

 。4)、每袋茶葉的千克數(shù)一定,茶葉的總千克數(shù)和袋數(shù)。

 。5)、拖拉機每天耕地的公頃數(shù)一定,耕地總面積和天數(shù)。問:判斷兩種相關(guān)聯(lián)的量成什么比例,我們關(guān)鍵是看它們的什么?

  2、揭題

  我們可以應(yīng)用比例知識解答相應(yīng)的應(yīng)用題,這節(jié)課,我們聯(lián)系正、反比例應(yīng)用題。出示:正、反比例應(yīng)用題(練習課)

  3、根據(jù)已知條件,將題目補充完整,使之成為用正或反比例解答的應(yīng)用題,并列式。(口答)

  (1)、同學們做廣播操,每行站15人,站了12行,?

  (2)、100克海水可以曬出3克鹽,照這樣計算,?

  4、對比練習:

  (1)解放軍戰(zhàn)士劉剛從兵營騎馬去馬場,每小時行60千米,要3小時到達。如果每小時行72千米,幾小時可以到達馬場?

 。2)解放軍戰(zhàn)士劉剛從兵營騎馬去馬場,3小時行180千米,照這樣計算,5小時行多少千米?

 。1)讀題

  (2)師:現(xiàn)在我們運用比例知識來解答這兩道題,首先看第一題,請同學們找一找數(shù)量之間有怎樣的關(guān)系式?兩種相關(guān)聯(lián)的量成什么比例關(guān)系? 逐步出示數(shù)量關(guān)系式——對應(yīng)關(guān)系——列出等式。

  (3)按照第一題的討論方法思考第二題。

  (4)比較:正、反比例應(yīng)用題解題過程有什么相同的.地方?解題方法有什么不同?

 。5)小結(jié)。板書: 判斷比例關(guān)系

  找出對應(yīng)數(shù)值

  列出等式解答

  5、只列式不計算:(用比例知識解,寫清解設(shè)??)

 。1)讀一本故事書,小紅每天讀25頁,要讀12天;如果要10天讀完,每天應(yīng)讀多少頁?

  (2)用同樣的磚鋪地,鋪18平方米要用618塊磚;如果鋪24平方米,要用多少塊磚?

 。3)一間房子要用方磚鋪地,需要用面積是9平房分米的方磚96塊;如果改用面積是4平房分米的方磚要多少塊?

 。4)安裝一條下水管道,15天安裝了120米;照這樣計算,20天能安裝多少米?

 。5)100克蜂蜜里含有克葡萄糖;照這樣計算,千克蜂蜜里含有多少千克葡萄糖?

 。ǘ⒌诙䦟哟,綜合性應(yīng)用練習的設(shè)計。

  1、解決生活中的問題

  把米長的竹竿直立在地上,量得它的影長是米,

  (1)同時量得學校旗桿的影長是米,學校旗桿高多少米?

 。2)量出自己身邊一個物體的高度,你能不能求出它的影長?

  2、知識間的聯(lián)系

  兩個底面半徑相等的圓柱,第一個圓柱的高是第二個圓柱的高的。第二個圓柱的體積是60立方分米,第一個圓柱的體積是多少?

  問:“ 第一個圓柱的高是第二個圓柱的高的 ”還可以怎么說? 思考:當兩個圓柱底面積相等時,

 。1)圓柱體積與高成什么比例?

  (2)兩個圓柱體積的比與對應(yīng)高的比有怎樣的關(guān)系?為什么?

  你能有幾種方法解答?

  說明:按照分數(shù)與比之間的聯(lián)系,有些應(yīng)用題可以用分數(shù)和比例知識采用不同的方法解答。

  3、變式訓練,加深拓寬

  (1)選擇正確的解法:儀器廠現(xiàn)有5臺機器,每天可生產(chǎn)1800個零件;如果用8臺同樣的機器,每天可生產(chǎn)零件多少個? X=1800X5 :5= X:8 同桌討論:

 。1)為什么選擇B?

 。2)用A解為什么是錯誤的?

 。3)它是什么關(guān)系的應(yīng)用題?

 。2)如果將上題改成“??如果再增加8臺這樣的機器??”,求每天可生產(chǎn)零件多少個?

 。3)改上題問句為“每天可多生產(chǎn)零件多少個?”

 。4)假如把上題條件再改為“??用8臺這樣的機器,每天可多生產(chǎn)零件多少個?”

 。ㄈ⒌谌龑哟,創(chuàng)造性應(yīng)用練習的設(shè)計。

  1、一輛汽車從甲地開往乙地,按每小時40千米的速度,要行駛小時;實際3小時行駛了150千米,這樣行駛完全程要幾小時? 學生先獨立思考列式,然后指名反饋。同桌學生討論各個算式。師生集體討論。

  2、在含有鉛375克和錫 237克的合金中,增加鉛多少克,可使鉛與錫的比為5:3?

  二、拓展練習

  1、4人小組活動。并做好記錄。

  找一找生活中還有哪些成正、反比例的例子,與同伴交流。最后由小組匯報,全班交流。

  2、學以致用。

 。ㄒ唬、判斷.

  1.一個因數(shù)不變,積與另一個因數(shù)成正比例.

  2.長方形的長一定,寬和面積成正比例.

  3.大米的總量一定,吃掉的和剩下的成反比例.

  4.圓的半徑和周長成正比例.

  5.分數(shù)的分子一定,分數(shù)值和分母成反比例.

  6.鋪地面積一定,方磚的邊長和所需塊數(shù)成反比例.

  7.鋪地面積一定,方磚面積和所需塊數(shù)成反比例.

  8.除數(shù)一定,被除數(shù)和商成正比例.

 。ǘ⑦x擇.

  1.把一堆化肥裝入麻袋,麻袋的數(shù)量和每袋化肥的重量.

  A.成正比例 B.成反比例 C.不成比例

  2.和一定,加數(shù)和另一個加數(shù).

  A.成正比例 B.成反比例 C.不成比例

  3.在汽車每次運貨噸數(shù),運貨次數(shù)和運貨的總噸數(shù)這三種量中,成正比例關(guān)系是,成反比例關(guān)系是.

  A.汽車每次運貨噸數(shù)一定,運貨次數(shù)和運貨總噸數(shù). B.汽車運貨次數(shù)一定,每次運貨的噸數(shù)和運貨總噸數(shù). C.汽車運貨總噸數(shù)一定,每次運貨的噸數(shù)和運貨的次數(shù).

 。ㄈ⑺伎迹 如果,和 成比例,則 ∶ =∶

  四、總結(jié)

  你有什么收獲?總結(jié)規(guī)律:如:涉及加減關(guān)系、平方關(guān)系、立方關(guān)系不成比例等。

  《比例的意義》教案 篇21

  教學目標

  1.理解比和比例的意義及性質(zhì).

  2.理解比例尺的含義.

  教學重點

  整理比和比例、求比值及比例尺.

  教學難點

  正、反比例概念和判斷及應(yīng)用.

  教學步驟

  一、基本訓練.

  43-27

  5.65+0.5 4.8÷0.4 1.25÷ 100×1%

  0.25×40 2-

  二、歸納整理.

 。ㄒ唬┍群捅壤囊饬x及性質(zhì).

  1.回憶所學知識,填寫表格【演示課件“比和比例”】

  2.分組討論:

  比和分數(shù)、除法有什么聯(lián)系?

  比的基本性質(zhì)有什么作用?比例的基本性質(zhì)呢?

  3.總結(jié)幾種比的化簡方法.【繼續(xù)演示課件“比和比例”】

  比

  前項

  ∶(比號)

  后項

  比值

  除法

  分數(shù)

 。1)整數(shù)比化簡,比的前項和后項同時除以它們的最大公約數(shù).

 。2)小數(shù)比化簡,一般是把前項、后項的小數(shù)點向右移動相同的位數(shù)(位數(shù)不夠補零),使它成為整數(shù)比,再用第一種方法化簡.

 。3)分數(shù)比化簡,一般先把比的前項、后項同時乘上分母的最小公倍數(shù),使它成為整數(shù)比,再用第一種方法化簡.

 。4)用求比值的方法化簡,求出比值后再寫成比的形式.

  解比例:12 :x=8 :2

  4.鞏固練習.

  (1)李師傅昨天6小時做了72個零件,今天8小時做了96個零件.寫出李師傅昨天和今天所做零件個數(shù)的比和所用時間的比.這兩個比能組成比例嗎?為什么?

 。2)甲數(shù)除以乙數(shù)的商是1.4,甲數(shù)和乙數(shù)的比是多少?

 。3)解比例: ∶ =8∶2

  (二)求比值和化簡比.【繼續(xù)演示課件“比和比例”】

  1.求比值:4∶

  化簡比:4∶

  2.比較求比值和化簡比的區(qū)別.

  一般方法

  結(jié)果

  求比值

  根據(jù)比值的意義,用前項除以后項

  是一個商,可以是整數(shù)、小數(shù)或分數(shù)

  化簡比

  根據(jù)比的基本性質(zhì),把比的前項和后項都乘以或者除以相同的數(shù)(零除外)

  是一個比,它的前項和后項都是整數(shù)

  3.鞏固練習.

 。1)求比值.

  45∶72 ∶3

 。2)化簡比.

  ∶ 0.7∶0.25

  (三)比例尺.【繼續(xù)演示課件“比和比例”】

  1.出示中國地圖.

  教師提問:

 。1)這幅地圖的比例尺是多少?(比例尺是 )

 。2)什么叫做比例尺?這個比例尺的含義是什么?(表示實際距離是圖上距離的6000000倍)

 。3)比例尺除了寫成 ,以外,還可以怎樣表示?

  2.鞏固練習.

  在一幅地圖上,用3厘米長的線段表示實際距離900千米.這幅地圖的比例尺是多少?

  在這幅圖上量得A、B兩地的距離是2.5厘米,A、B兩地的`實際距離是多少千米?一條長480千米的高速公路,在這幅地圖上是多少厘米?

 。ㄋ模┱壤头幢壤纠^續(xù)演示課件“比和比例”】

  1.回憶正、反比例意義.

  2.鞏固練習.

 。1)判斷下面各題中的兩種量是不是成比例.如果成比例,成什么比例.

 、偈杖胍欢,支出和結(jié)余

  ②出米率一定,稻谷的重量和大米的重量.

 、蹐A柱的側(cè)面積一定,它的底面周長和高.

 。2)木料總量、每件家具的用料和制成家具的件數(shù)這三種量

  當( )一定時,( )和( )成正比例;

  當( )一定時,( )和( )成正比例;

  當( )一定時,( )和( )成反比例.

  (3)如果 =8 , 和 成( )比例.

  如果 = , 和 成( )比例.

 。4)在一幅地圖上,比例尺一定,圖上距離和實際距離是不是成比例?成什么比例?

  三、全課小結(jié).

  這節(jié)課我們復(fù)習了什么?通過這節(jié)課的復(fù)習你有什么收獲?還有哪些不清楚的

  問題?

  四、課堂練習.

  1.填空.

 。╨)根據(jù)右面的線段圖,寫出下面的比.

 、偌讛(shù)與乙數(shù)的比是( ). 甲數(shù):

  ②乙數(shù)與甲數(shù)的比是( ). 乙數(shù):

 、奂讛(shù)與甲乙兩數(shù)和的比是( ).

 、芤覕(shù)與甲乙兩數(shù)和的比是( ).

 。2)( )24= =24 ∶( )=( )%.

 。3) ∶6的比值是( ).如果前項乘上3,要使比值不變,后項應(yīng)該( ).如果前項和后項都除以2,比值是( ).

 。4)把(1噸):(250千克)化成最簡整數(shù)比是( ),它的比值是( ).

 。5) 與3.6的最簡整數(shù)比是( ),比值是( ).

 。6)如果a×3=b×5,那么a∶b=( )∶( ).

 。7)如果a∶4=0.2∶7,那么a=( ).

 。8)把線段比例尺 改寫成數(shù)值比例尺是( ).

 。9)甲數(shù)乙數(shù)的比是4∶5,甲數(shù)就是乙數(shù)的( ).

 。10)甲數(shù)的 等于乙數(shù)的 ,甲乙兩數(shù)的比是( ).

  2.選擇正確答案的序號填在( )里.

 。1)1克藥放入100克水中,藥與藥水的比是( ).

 、1∶99 ②1∶100 ③1∶101 ④100∶101

 。2)一項工程,甲隊單獨做要10天,乙隊單獨做要8天.甲隊和乙隊工作效率的最簡整數(shù)比是( ).

 、10∶8 ② 5∶4 ③4、∶5 ④ ∶

  (3)在下面各比中,與 ∶ 能組成比例的是( ).

 、4∶3 ②3∶4 ③ ∶3 ④ ∶

 。4)有一無,某班的出勤率是90%,出勤人數(shù)和缺勤人數(shù)的比是( ).

  ①9∶10 ②10∶9 ③1∶9 ④9∶1

 。5)在一幅地圖上用1厘米的線段表示5千米的實際距離,這幅地圖的比例尺是( ).

 、1∶5 ②1∶5000 ③1∶500000

  (6)用3、5、9、15這四個數(shù)組成的比例式是( ).

 、15∶3=5∶9 ②3∶15 ③15∶9=5∶3 ④9∶3=5∶15

  (7)在比例尺 的地圖上,2厘米表示( ).

 、0.4千米 ②4千米 ③40千米

 。8)大小兩圓半徑的比是3∶2,它們的面積的比是( ).

  ①3∶2 ②6∶4 ③9∶4

  五、布置作業(yè).

  1.化簡下面各比.

  0.12∶56 ∶

  2.寫出兩個比值都是3的比,并組成比例

  3.寫出一個比例,使它兩個內(nèi)項的積是12.

  4.如圖是用1∶20的比例尺畫的一個機器零件的截面圖,量出圖中兩個圓的半徑,并計算這個零件截面的實際面積.

  《比例的意義》教案 篇22

  教學內(nèi)容:教材第111~112頁比例的知識和比例尺的計算、“練一練”,練習二十一第9一14題,練習二十一后面的思考題。

  教學要求:

  1、使學生加深認識比例的意義和基本性質(zhì),能判斷兩個比能不能組成比例,能比較熟練地解比例。

  2、使學生掌握比例尺的意義,能正確地進行有關(guān)比例尺的計算,培養(yǎng)學生運用知識的能力。

  教學過程:

  一、揭示課題

  在復(fù)習了比的知識后,這節(jié)課復(fù)習比例的知識和比例尺的計算。(板書課題)

  二、復(fù)習比例知識

  1、復(fù)習比例的意義。

  (1)提問:上面的比能組成哪些比例?為什么?

  什么叫做比例?(板書:比例:表示兩個比相等的式子。)你能說出比例里各部分的名稱嗎?(板書各部分名稱)

  (2)學生練習。

  讓學生在練習本上任意寫一個比和一個比例。指名一人口答所寫的比和比例,老師板書。提問:比和比例有什么區(qū)別?說明:比和比例的意義不同,比表示兩個數(shù)相除的關(guān)系、比例表示兩個比的相等關(guān)系;組成比和比例的項不同,比只有兩項,比例有四項。

  2、復(fù)習比例的基本性質(zhì)。

  (1)提問:比例的基本性質(zhì)是什么?(板書;比例的基本性質(zhì):外項的積等于內(nèi)項的積。)請同學們按照比例的基本性質(zhì),在課本第111頁上根據(jù)0.4:3=2:15,寫出內(nèi)項積等于外項積的式子。追問:比例的'基本性質(zhì)和比的基本性質(zhì)有什么不同?

  (2)解比例。

  學習比的基本性質(zhì)有什么作用?(板書:解比例)做“練一練”第2題。指名四人板演,其余學生分兩組,分別在練習本上做前兩題和后兩題。集體訂正,選擇兩題讓學生說一說第一步的依據(jù)。提問:大家總結(jié)一下解比例的過程。指出:解比例要先根據(jù)比例的基本性質(zhì),寫成積相等的式子,再求出等式里未知的因數(shù)x。

  三、復(fù)習比例尺計算

  1、說明:應(yīng)用比的知識或者解比例的方法可以計算比例尺的有關(guān)問題。(板書:比例尺)

  2、復(fù)習比例尺的意義、

  請同學們自己閱讀第112頁上關(guān)于比例尺的內(nèi)容,進一步弄清什么是比例尺,比例尺有幾種形式。提問:什么是比例尺?(板書:圖上距離:實際距離=比例尺)比例尺有哪幾種形式?誰來舉一個數(shù)值比例尺的例子,并且說明它實際表示什么意思?(根據(jù)學生舉例板書出一個比例尺,讓學生說說圖上距離是實際距離的幾分之一,實際距離是圖上距離的多少倍)

  3、學生討論、操作。

  如果學校平面圖的比例尺是1:1000,它表示什么意思?圖上1厘米表示實際距離多少?你能畫出線段比例尺來表示它嗎?(讓學生畫在練習本上,然后交換檢查)

  4、做“練一練”第3題。

  請同學們做“練一練”第3題。指名一人板演,其余學生做在練習本上。集體訂正,讓學生說說是怎樣想的。指出:求圖上距離或?qū)嶋H距離,可以先設(shè)未知數(shù)為x,再根據(jù)比例尺的意義列出比例,然后解比例求出結(jié)果,也可以根據(jù)比的前項和后項的倍數(shù)關(guān)系來求出結(jié)果。

  四、綜合練習

  1、歸納復(fù)習內(nèi)容。

  讓學生說—說本節(jié)課復(fù)習的具體內(nèi)容。

  2、做練習二十一第9題。

  學生先自己思考,然后指名口答。

  3、做練習二十一第11題。

  讓學生寫在練習本上。指名口答,老師板書。說說應(yīng)怎樣想。

  4、做練習二十一第13題。

  (1)做第(1)題。

  指名板演,其余學生做在練習本上。集體訂正。提問:怎樣求一幅圖的比例尺?

  (2)討論第(2)、(3)題。

  提問:求出這幅圖的比例尺后,下面兩題可以怎樣解答?

  5、討論練習二十一第14題。

  讓學生讀題。這兩題有什么相同和不同的地方?想一想,解答這兩題應(yīng)該有什么不同?(強調(diào)要注意份數(shù)與數(shù)量之間的對應(yīng)關(guān)系)

  五、講解思考題

  讓學生讀題。提問:如果照按比例分配問題思考,還需要知道什么條件?現(xiàn)在已知的比的條件怎樣?你能應(yīng)用比的基本性質(zhì),把這個比改寫成甲數(shù)、乙數(shù)、丙數(shù)三個數(shù)的比嗎?請大家課后先把這兩個條件化成甲、乙、丙三個數(shù)的比,再自己試一試,求出三個數(shù)各是多少。

  六、布置作業(yè)

  課堂作業(yè);練習二十一第12題(1)、(3)、(5),第13題(2)、(3),第14題。

  家庭作業(yè):練習二十一第12題(2)、(4)、(6)。

【《比例的意義》教案】相關(guān)文章:

《比例的意義》教案07-07

《比例的意義》教案(14篇)01-05

《比例的意義》教案(精選23篇)02-22

《比例的意義》教案14篇01-05

《比例的意義》教案15篇10-12

《比例的意義》教案(匯編15篇)12-30

《比例的意義》教案匯編15篇12-30

《比例的意義》教案(通用21篇)03-03

《比例的意義》教案(通用15篇)02-10