- 相關推薦
《因數(shù)與倍數(shù)》小學教案(通用12篇)
教案是教師為順利而有效地開展教學活動,根據(jù)課程標準,教學大綱和教科書要求及學生的實際情況,以課時或課題為單位,對教學內容、教學步驟、教學方法等進行的具體設計和安排的一種實用性教學文書。下面是小編整理的《因數(shù)與倍數(shù)》小學教案,歡迎大家分享。
《因數(shù)與倍數(shù)》小學教案 篇1
一、談話導入,激發(fā)興趣
1、回顧學過的數(shù)
2、明確學習主題
二、自主學習,探究新知
1、自主學習
自學指導:閱讀課本P12和P13例1
。1)2脳6=12,表示的意義是什么?在這個乘法算式中,誰是誰的因數(shù),誰是誰的倍數(shù)?
。2)想一想:什么情況下,兩個不是零的自然數(shù)之間是因數(shù)(倍數(shù))的關系?
。3)怎樣找出18的全部因數(shù)?你是怎樣想的?
怎樣表示出18的.因數(shù)?
要求:1、獨立學習
2、時間6分鐘
3、全班交流
問題一:初建模型
在圖式結合中構建因數(shù)、倍數(shù)的概念,并從中感受因數(shù)和倍數(shù)是相互依存的,有著互逆關系的一組概念。
問題二:深化模型
明確因數(shù)與倍數(shù)的外延,進一步認識、內化因數(shù)、倍數(shù)的內涵,從中提煉出因數(shù)、倍數(shù)模型的本質意義。
ab=c(a、b、c為非零自然數(shù))
問題三:應用模型
、俳涣髡乙粋數(shù)的因數(shù)的方法及表示方法。
、谡30、36的因數(shù)。
3、議一議
(1)今天學習的因數(shù)與乘法算式中的因數(shù)一樣嗎?倍數(shù)與倍一樣嗎?
。2)通過找一個數(shù)的因數(shù),你有什么發(fā)現(xiàn)?
三、檢測反饋,拓展運用
四、板書設計
因數(shù)和倍數(shù)
2脳6=12
2和6是12的因數(shù)。
12是2和6的倍數(shù)。
3脳4=12
ab=c(a、b、c為非零自然數(shù))
a和b是c的因數(shù),c是a和b的倍數(shù)。
《人教版:五年級下冊《因數(shù)與倍數(shù)》教學設計》
《因數(shù)與倍數(shù)》小學教案 篇2
學習內容:
人教版小學數(shù)學五年級下冊教材第12—13頁。
學習目標:
1.我能理解因數(shù)與倍數(shù)的含義。
2.我會有序地思考,掌握了找一個數(shù)的因數(shù)的方法。
3.我知道一個數(shù)的因數(shù)的`個數(shù)是有限的。
學習重點:
理解因數(shù)和倍數(shù)的含義,掌握求一個數(shù)的因數(shù)的方法。
學習難點:
能熟練地找一個數(shù)的因數(shù)。
教學過程:
一、導入新課
二、檢查獨學
1.互動分享收獲。
2.質疑探討。
三、合作探究
1.小組討論:乘法算式中的因數(shù)和這里講的因數(shù)一樣嗎?
。1)我的想法:________________________________
(2)小組代表交流、匯報。
。3)自讀課本第12頁下面的一段話。
2.自學課本第13頁例1。思考:
。1)18的因數(shù)有________、________、________、________、________、________,共 有________個。
。2)18的最小因數(shù)是________,最大因數(shù)是________。它的因數(shù)的個數(shù)是________的。
(3)也可以這樣表示: 18的因數(shù)
3.組內交流并討論:怎樣找最快,而且不容易遺漏?
我的想法:________________________________
4.小組代表匯報,總結。
5.試試身手(第13頁“做一做”)。
《因數(shù)與倍數(shù)》小學教案 篇3
教學目標:
1.學生通過回憶和整理,進一步明確因數(shù)和倍數(shù)的相關知識,加深認識相關概念之間的聯(lián)系與區(qū)別,能求兩個數(shù)的公因數(shù)和公倍數(shù),并能運用這些知識解決相關實際問題。
2.學生在應用相關知識進行判斷和推理的過程中,能說明思考過程,進一步培養(yǎng)歸納概括和演繹推理等思維能力,進一步增強分析問題和解決問題的能力。
3.學生進一步體會數(shù)學知識之間的內在聯(lián)系,感受數(shù)學思考的嚴謹性和數(shù)學結論的確定性,激發(fā)學習數(shù)學的`興趣和學好數(shù)學的自信心。
教學重點:
掌握倍數(shù)和因數(shù)等相關概念,以及應用概念判斷、推理。
教學難點:
理解相關概念的聯(lián)系和區(qū)別。
教學過程:
一、揭示課題
1.回顧知識。
提問:上節(jié)課,我們已經(jīng)復習了整數(shù)和小數(shù)的有關知識。
在整數(shù)知識里,我們還學習了因數(shù)和倍數(shù),誰能來說說你是怎樣理解因數(shù)和倍數(shù)的?一個數(shù)的因數(shù)和倍數(shù)各有什么特點?
結合學生交流,板書。
2.揭示課題。
引入:這節(jié)課,我們復習因數(shù)和倍數(shù)的相關知識。
通過復習,能進一步了解關于因數(shù)和倍數(shù)的知識,理解它們之間的聯(lián)系和區(qū)別,并能應用這些知識。
二、基本練習
1.知識梳理。
提高:回想一下,在學習因數(shù)和倍數(shù)時,我們還學習了哪些相關的知識?
學生回顧,交流,教師適當引導回顧。
提問:2、5、3的倍數(shù)各有什么特征?什么叫奇數(shù),什么叫偶像?什么叫質數(shù),什么叫合數(shù)?什么叫公因數(shù)和最大公因數(shù)?什么叫公倍數(shù)和最小公倍數(shù)?
根據(jù)學生回答,板書整理。
2.做練習與實踐第10題。
學生獨立完成,指名板演。
集體交流,讓學生說說找一個數(shù)的因數(shù)和倍數(shù)的方法。
3.做練習與實踐第11題。
出示題目,學生直接口答。
提問:怎樣判斷一個數(shù)是不是2的倍數(shù)?判斷是3和5的倍數(shù)呢?
追問:這里哪些是偶數(shù),哪些是奇數(shù)?說說你是怎樣想的。
4.做練習與實踐第12題。
學生先獨立寫出質數(shù)和合數(shù),再指名口答。
追問:最小質數(shù)是幾?最小的合數(shù)呢?
《因數(shù)與倍數(shù)》小學教案 篇4
學習內容:
人教版小學數(shù)學五年級下冊第21頁第8題、第22頁。
學習目標:
1.通過綜合練習,我能熟練掌握2、5、3的倍數(shù)的特征。
2.我能運用2、5、3的倍數(shù)的特征解決問題。
學習重點:
熟練掌握2、5、3的倍數(shù)的特征。
學習難點:
運用2、5、3的倍數(shù)的特征解決綜合問題。
教學過程:
一、導入新課
二、檢查獨學
1.互動分享獨學部分的完成情況。
2.質疑探討。
三、合作探究
1.小組合作,完成課本第21頁第8題。
(1)3個3的倍數(shù)的.偶數(shù)________________
。2)3個5的倍數(shù)的奇數(shù)________________
討論:你能說出3個既是3的倍數(shù)又是5的倍數(shù)的偶數(shù)或奇數(shù)嗎?
2.自主完成第22頁第10題,然后與同伴交流。
3.小組合作,完成第11題,然后組內代表匯報。
4.小組交流“生活中的數(shù)學”。
《因數(shù)與倍數(shù)》小學教案 篇5
學習內容:
人教版小學數(shù)學五年級下冊第23、24頁。
學習目標:
1.我能理解什么是質數(shù)和合數(shù),掌握了判斷質數(shù)、合數(shù)的方法。
2.我知道100以內的質數(shù),記住了20以內的質數(shù)。
3.我能在自主探究中獨立思考,合作探究時暢所欲言。
學習重點:
能理解質數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質數(shù)還是合數(shù)。
學習難點:
用恰當?shù)姆椒ㄕ页?00以內的質數(shù);會給自然數(shù)分類。
教學過程:
一、導入新課
二、檢查獨學
1.互動分享收獲。
2.質疑探討。
3.試試身手:第23頁做一做。
三、合作探究
1.小組合作,利用課本24頁的'表格,用恰當?shù)姆椒ㄕ页?00以內的質數(shù),做一個質數(shù)表。
2.展示、交流:你們是怎樣找出100以內質數(shù)的?
3.小組討論:
。1)有沒有最大的質數(shù)或合數(shù)?
。2)根據(jù)因數(shù)的個數(shù),可把非零自然數(shù)分成哪幾類?
我的想法________________________________
4.我能很快熟記20以內的質數(shù)。
5.獨立思考:
(1)是不是所有的質數(shù)都是奇數(shù)?
(2)是不是所有的奇數(shù)都是質數(shù)?
(3)是不是所有的合數(shù)都是偶數(shù)?
(4)是不是所有的偶數(shù)都是合數(shù)?
6.組內交流。
《因數(shù)與倍數(shù)》小學教案 篇6
[教學內容]
數(shù)的奇偶性
[教學目標]
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
[教學重、難點]
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
[教學過程]
活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。
讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。
試一試:
本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律
先研究“偶數(shù)+偶數(shù)”的'規(guī)律,在經(jīng)歷“列式計算—初步得出結論—舉例驗證—得出結論”的過程后,再引導學生用這樣的研究方式探索“奇數(shù)+奇數(shù)”“奇數(shù)+偶數(shù)”的奇偶性變化規(guī)律,最后讓學生應用結論判斷計算結果是奇數(shù)還是偶數(shù)。還可以引導學生研究減法中奇偶性的變化規(guī)律
偶數(shù)+偶數(shù)=偶數(shù)
奇數(shù)+奇數(shù)=偶數(shù)
偶數(shù)+奇數(shù)=奇數(shù)
[板書設計]
數(shù)的奇偶性
例子: 結論:
12 + 34 = 48 偶數(shù)+偶數(shù)=偶數(shù)
11 + 37 =48 奇數(shù)+奇數(shù)=偶數(shù)
12 + 11 =23 奇數(shù)+偶數(shù)=奇數(shù)
《因數(shù)與倍數(shù)》小學教案 篇7
教學目標:
1、 從操作活動中理解因數(shù)與倍數(shù)的意義,會判斷一個數(shù)不是另一個數(shù)的因數(shù)或倍數(shù)。
2、培養(yǎng)學生抽象、概括與觀察思考的能力,滲透事物之間相互聯(lián)系,相互依存的辨證唯物主義觀點。
3、培養(yǎng)學生的合作意識、探索意識,以及熱愛數(shù)學學習的情感。
教學重點:
理解因數(shù)和倍數(shù)的意義
教學難點:
因數(shù)和倍數(shù)等概念間的聯(lián)系和區(qū)別。
教學過程:
一、認識因數(shù)與倍數(shù),預習反饋
1、反饋主題圖,根據(jù)主題圖的不同情況寫出乘法算式和除法算式。
反饋:
1×12=122×6=123×4=1212×1=126×2=124×3=1212÷1=1212÷2=612÷3=412÷12=112÷6=212÷4=3
2、觀察并回答。
(1)這三組乘法、除法算式中,都有什么共同點?
。2)像這樣的'乘除法算式中的三個數(shù)之間還有另一種說法,你想知道嗎?
(3)這樣的三個數(shù),我們也可以怎樣說?(2和6是12的因數(shù)),請大家也像這樣把其余的兩組數(shù)也說一說。
請看教材12頁,2和6與12的關系還可以怎么說?
(4)也就是說2和6與12的關系是因數(shù)和倍數(shù)的關系,這幾組數(shù)中,誰和誰還有因數(shù)和倍數(shù)的關系?
。5)提問:能不能說12是12的因數(shù)呢?
(6)小結:上面這三組算式中,我們知道:1、2、3、4、6、12都是12的因數(shù)。
3.討論:23÷4=5……3,提問:23是4的倍數(shù)嗎?為什么?
誰能舉一個算式例子,并說說誰是誰的倍數(shù),誰是誰的因數(shù)?
4.討論:0×3 0×10 0÷3 0÷10
提問:通過剛才的計算,你有什么發(fā)現(xiàn)?
5.注意:(1)為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)一般指的是整數(shù),但不包括0。(2) 這節(jié)課我們研究因數(shù)與倍數(shù)的關系中所說的因數(shù)不是以前乘法算式名稱的“因數(shù)”,兩者不能搞混淆。
二、鞏固新知
1.下面每一組數(shù)中,誰是誰得因數(shù),誰是誰得倍數(shù)?
16和2 4和24 72和8 20和5
2.下面得說法對嗎?說出理由。
(1)48是6的倍數(shù)
。2)在13÷4==3……1中,13是4的倍數(shù)
。3)因為3×6=18,所以18是倍數(shù),3和6是因數(shù)。
3.在36、4、9、12、3、0這些數(shù)中,誰和誰有因數(shù)和倍數(shù)關系。
4、完成P15第2題
學生自己獨立完成,講評時讓學生說一說,是怎么想的?
三、思維訓練
1、判斷
(1)12的因數(shù)有:1、2、3、4、6、12。
(2)整數(shù)32的因數(shù)共有4個。
。3)自然數(shù)a的最大因數(shù)是a,最小因數(shù)是1。
(4)一個數(shù)的因數(shù)都小于這個數(shù)。
2.游戲。記住自己的學號,聽老師說要求,符合要求的同學請舉手。
。1)( )是4的倍數(shù) (2)( )是60的因數(shù)
(3)( )是5的倍數(shù) (4)( )是36的因數(shù)
四、課后小結:
五、 布置作業(yè)
《因數(shù)與倍數(shù)》小學教案 篇8
【知識點講解和梳理】
一、數(shù)的世界
1、認識自然數(shù)和整數(shù),聯(lián)系乘法認識倍數(shù)與因數(shù)。
整數(shù):如-3,-2,-1,0,1,2,3,4……這樣的數(shù)叫做整數(shù)。
自然數(shù):如0,1,2,3,4,5……這樣的數(shù)叫做自然數(shù)。
2、我們只在自然數(shù)(零除外)范圍內研究倍數(shù)和因數(shù)。
3、倍數(shù)與因數(shù)是相互依存的關系,要說清誰是誰的倍數(shù),誰是誰的因數(shù)。補充【知識點】:一個數(shù)的倍數(shù)的個數(shù)是無限的。
二、2,5的倍數(shù)的特征
1、2的倍數(shù)的特征。個位上是0,2,4,6,8的數(shù)是2的倍數(shù)。
2、5的倍數(shù)的特征。個位上是0或5的數(shù)是5的倍數(shù)。
3、偶數(shù)和奇數(shù)的定義。是2的倍數(shù)的數(shù)叫偶數(shù),不是2的倍數(shù)的數(shù)叫奇數(shù)。
4、能判斷一個數(shù)是不是2或5的倍數(shù)。
5.、能判斷一個非
零自然數(shù)是奇數(shù)或偶數(shù)。
補充【知識點】:既是2的倍數(shù),又是5的倍數(shù)的特征:個位上是0的數(shù)既是2的倍數(shù),又是5的倍數(shù)。
三、3的倍數(shù)的特征
1、3的倍數(shù)的特征。
一個數(shù)各個數(shù)位上的數(shù)字的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
2、能判斷一個數(shù)是不是3的倍數(shù)。
補充【知識點】:
1、同時是2和3的倍數(shù)的特征:個位上的數(shù)是0,2,4,6,8,并且各個數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是2的倍數(shù),又是3的倍數(shù)。
2、同時是3和5的倍數(shù)的特征:個位上的數(shù)是0或5,并且各個數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是3的倍數(shù),又是5的倍數(shù)。
3、同時是2,3和5的倍數(shù)的特征。個位上的數(shù)是0,并且各個數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是2和5的倍數(shù),又是3的倍數(shù)。
四、找因數(shù)
在1~100的自然數(shù)中,找出某個自然數(shù)的所有因數(shù)。
方法:運用乘法算式,思考:哪兩個數(shù)相乘等于這個自然數(shù)。找一個數(shù)的因數(shù),就是看它可以由哪兩個因數(shù)相乘得到
補充【知識點】:一個數(shù)的因數(shù)的個數(shù)是有限的。其中最小的因數(shù)是1,最大的因數(shù)是它本身。
五、找質數(shù)
1、理解質數(shù)與合數(shù)的意義。
按因數(shù)的個數(shù)分類:大于1的自然數(shù)可以分為(質數(shù))和(合數(shù))。
一個數(shù)只有1和它本身兩個因數(shù),這個數(shù)叫作質數(shù)。
一個數(shù)除了1和它本身以外還有別的因數(shù),這個數(shù)叫作合數(shù)。
2、1既不是質數(shù)也不是合數(shù)。
3、判斷一個數(shù)是質數(shù)還是合數(shù)的方法:
一般來說,首先可以用“2,5,3的倍數(shù)的特征”判斷這個數(shù)是否有因數(shù)2,5,3;如果還無法判斷,
則可以用7,11等比較小的質數(shù)去試除,看有沒有因數(shù)7,11等。只要找到一個1和它本身以外的因數(shù),就能肯定這個數(shù)是合數(shù)。如果除了1和它本身找不到其他因數(shù),這個數(shù)就是質數(shù)。
4、100以內的質數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、、79、83、89、97。
補充【知識點】既是質數(shù),又是偶數(shù)的自然數(shù)(2);既是質數(shù),又是奇數(shù)的最小數(shù)(3)
既不是質數(shù),又不是合數(shù)的數(shù)(1);既是偶數(shù),又是合數(shù)的最小數(shù)(4)
既是奇數(shù)又是合數(shù)的最小數(shù)(9);最大的一位合數(shù),還是偶數(shù)(8)
六、數(shù)的奇偶性
1、運用“列表”“畫示意圖”等方法發(fā)現(xiàn)規(guī)律:
小船最初在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。通過“列表”“畫示意圖”的方法會發(fā)現(xiàn)“奇數(shù)次在北岸,偶數(shù)次在南岸”的規(guī)律。
2、能夠運用上面發(fā)現(xiàn)的數(shù)的奇偶性解決生活中的一些簡單問題。
3、通過計算發(fā)現(xiàn)奇數(shù)、偶數(shù)相加奇偶性變化的規(guī)律:
偶數(shù)+偶數(shù)=偶數(shù)奇數(shù)+奇數(shù)=偶數(shù)偶數(shù)+奇數(shù)=奇數(shù)
補充【知識點】:
大于2的偶數(shù)都是合數(shù)。(√)
所有的質數(shù)都是奇數(shù)。如:2(×)
一個數(shù)最小的倍數(shù)和最大的因數(shù)都是它本身。(√)
兩個相鄰的自然數(shù)必定一質一合。如:2和3(×)
最小的質數(shù)是2,最小的合數(shù)是4,最小的偶數(shù)是0,最小的奇數(shù)是1
。ā蹋﹥蓚連續(xù)的自然數(shù)都是質數(shù),這兩個數(shù)是2和3(√)
兩個質數(shù)的積一定是合數(shù)(√)
兩個質數(shù)的和,可能是質數(shù),也可能是合數(shù)。如2+3=53+5=8(√)
奇數(shù)+奇數(shù)=偶數(shù)奇數(shù)+偶數(shù)=奇數(shù)(√)
【重點知識歸納及講解】
1、公約數(shù)、最大公約數(shù)和互質數(shù)的意義
。1)公約數(shù)的意義。幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。
如:12和18的公約數(shù)有:1、2、3、6.
。2)最大公約數(shù)的意義。幾個數(shù)的公約數(shù)中最大的一個,叫這幾個數(shù)的最大公約數(shù)。如:12和18的最大公約數(shù)是6.
。3)互質數(shù)的意義。公約數(shù)只有1的兩個數(shù),叫做互質數(shù)。如:3和8是互質數(shù),15和16也是互質數(shù)。
①成為互質數(shù)的兩個數(shù),不限定必須是質數(shù)。
、谫|數(shù)和互質數(shù)的意義不同。質數(shù)是就一個數(shù)說的,互質數(shù)是就兩個數(shù)的關系說的。
2、注意:求兩個數(shù)的最大公約數(shù)的兩種特殊情況。
①如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的最大公約數(shù)。如:15和45的最大公約數(shù)是15。
、谌绻麅蓚數(shù)是互質數(shù),它們的最大公約數(shù)就是1。如:8和15的最大公約數(shù)是1。
3、解題技巧指點:
。1)求幾個數(shù)的最大公約數(shù)時,要正確地理解和運用“最大公約數(shù)乘半邊”這一規(guī)律,即求最大公約數(shù)時,要把所有的除數(shù)都乘起來。
。2)用短除法求兩個數(shù)的公約數(shù)時,不一定要用最小的質數(shù)去除,也可以用較大的合數(shù)甚至是最大的公約數(shù)去除。
。3)用短除法求兩個數(shù)的最大公約數(shù)時,最后的兩個商一定要是互質數(shù),否則,求得的結果就不是最大公約數(shù)。
(4)正確判斷是求已知幾個數(shù)的最大公約數(shù)還是求最小公倍數(shù)是應用題的解題關鍵。技巧是:如果所求的數(shù)能夠整除幾個已知同類數(shù),是求最大公約數(shù)的問題;如果所求數(shù)必須能同時被已知幾個同類數(shù)整除,是求最小公倍數(shù)問題。如:
①用某數(shù)去除23、32結果都余2,問這個數(shù)最大是多少?(求最大公約數(shù)問題)
、谀嘲嗤瑢W如果每8人一組,或是每12人一組,結果都差3人,求某班學生最少有多少人?(求最小公倍數(shù)問題)
4、求兩個數(shù)最小公倍數(shù)的兩種特殊情況。
。1)如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù),如:12和6的最小公倍數(shù)是12。
。2)如果兩個數(shù)是互質數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。
5、求三個數(shù)的最小公倍數(shù)的方法。
先用三個數(shù)的公有質因數(shù)去除,當三個數(shù)公有的質因數(shù)都找盡以后,再用任何兩個數(shù)的公有質因數(shù)去除,把不能整除的那個數(shù)移下來,寫在商的位置上,一直除到最后的三個商每兩個數(shù)都是互質數(shù)(兩兩互質)為止。再把所有的除數(shù)和商都乘起來。
例1、求18和30的最大公約數(shù)。
分析:
用短除法求兩個數(shù)的最大公約數(shù)。一般先用這兩個數(shù)公有的質因數(shù)連續(xù)去除,一直除到所得的商是互質數(shù)為止,然后把所有的除數(shù)連乘起來。
解:
3、求最大公約數(shù)的實際應用。
例2、有兩根木料,一根長12米,另一根長18米,現(xiàn)在要把它們截成相等的小段,每根不許有剩余,每小段最長是多少?一共可以截成多少段?
分析:
這里求每小段最長是多少米,就是求12和18的最大公約數(shù)。
2+3=5(段)
答:每小段最長6米,一共可以截5段。
4、求兩個數(shù)的最小公倍數(shù)的方法。
例3、求18和30的.最小公倍數(shù)。
分析:
用短除法求兩個數(shù)的最小公倍數(shù)。一般先用這兩個數(shù)公有的質因數(shù)連續(xù)去除,一直除到所得的商是互質數(shù)為止,然后把所有的除數(shù)和商連乘起來。
答:18和30的最小公倍數(shù)是2×3×3×5=90.
5、求最小公倍數(shù)的實際應用。
例4、一些小朋友分組做游戲,第一次分組每組4人余下2人,第二次分組每組5人也余下2人,第三次分組每組6人還是余下2人。問最少有多少名小朋友做游戲?
分析:
根據(jù)題意,要求最少有多少名小朋友做游戲,就是在求出4、5、6這三個數(shù)的最小公倍數(shù)后,再加上2。
第九單元倍數(shù)和因數(shù)
知識點:因數(shù)和倍數(shù)的含義
練習:1、4×3=12,()是()的因數(shù),()是()的倍數(shù)。
2、3×6=18,所以3是因數(shù),18是倍數(shù)。()【判斷】
3、因為12÷()=(),所以20是()和()的倍數(shù)!咎羁铡
知識點:求一個數(shù)的因數(shù)和倍數(shù)
練習:1、一個數(shù)最小的因數(shù)是(),最大的因數(shù)是(),一個數(shù)因數(shù)的個數(shù)是()的。如18的最小因數(shù)是(),最大因數(shù)是()!咎羁铡
2、一個數(shù)最小的倍數(shù)是它(),()最大的倍數(shù)。一個數(shù)倍數(shù)的個數(shù)是()的。如:4的最小倍數(shù)是()。
3、寫出7的倍數(shù):(),40以內6的倍數(shù)(,30的因數(shù)()。91的因數(shù)()。
4、在4、6、8、12、16、18、20、24這八個數(shù)中,4的倍數(shù)有(),
6的倍數(shù)有(),既是4的倍數(shù)又是6的倍數(shù)有()。【填空】
5、在1、2、3、4、6、12、18這些數(shù)中,12的因數(shù)有(),18的因數(shù)有(),既是12的因數(shù)又是18的因數(shù)有()!咎羁铡
6、一個數(shù)既是40的因數(shù),又是5的倍數(shù),這個數(shù)可能是()!咎羁铡
7、一個數(shù)的最小倍數(shù)減去它的最大因數(shù),差是()。一個數(shù)的最小倍數(shù)除以它的最大因數(shù),商是()。
8、如果a的最大因數(shù)是17,b的最小倍數(shù)是1,則a+b的和的所有因數(shù)有()個;a-b的差的所有因數(shù)有()個;a×b的積的所有因數(shù)有()個。【填空】
9、一個數(shù)的最大因數(shù)是17,最小倍數(shù)是17,這個數(shù)是()。【填空】
練習:1、個位上是()的數(shù),都能被2整除;個位上是()的數(shù),都能被5整除!咎羁铡
2、在18、29、45、30、17、72、58、43、75、100中,2的倍數(shù)有();3的倍數(shù)有();5的倍數(shù)有(),既是2的倍數(shù)又是5的倍數(shù)有(),既是3的倍數(shù)又是5的倍數(shù)有()!咎羁铡
3、按要求做。從0、3、5、7、這4個數(shù)中,選出三個組成三位數(shù)!咎羁铡
。1)組成的數(shù)是2的倍數(shù)有:
。2)組成的數(shù)是5的倍數(shù)有:。
。3)組成的數(shù)是3的倍數(shù)有:。
4、不計算,判斷哪幾道題的結果沒有余數(shù)!具x擇】
48÷3□57÷3□342÷3□567÷3□802÷3□
5、要使7□這個兩位數(shù)是3的倍數(shù),□里可以填();三位數(shù)□12是3的倍數(shù),□里可以填();三位數(shù)3□5是3的倍數(shù),□里可以填()。
6、3的倍數(shù)都是9的倍數(shù),9的倍數(shù)都是3的倍數(shù)。()【判斷】
7、任何奇數(shù)加上1后都是2的倍數(shù)。()【判斷】
8、個位上是3、6、9的數(shù)都是3的倍數(shù)。()【判斷】
9、671至少加上()或減(),所得的自然數(shù)就是3的倍數(shù)。【填空】
10、同時是2和5倍數(shù)的數(shù),最小兩位數(shù)是(),最大兩位數(shù)是()。
11、同時是2、3、5的倍數(shù)的數(shù),最小是(),最小的三位數(shù)是()
12、4的倍數(shù)都是2的倍數(shù),2的倍數(shù)都是4的倍數(shù)。()【判斷】
13、12□既是2的倍數(shù),又是3的倍數(shù),□可以填()【填空】
14、一個數(shù)既是2的倍數(shù),又是3的倍數(shù),這個數(shù)是()的倍數(shù),一個數(shù)既是2的倍數(shù),又是5的倍數(shù),這個數(shù)是()的倍數(shù),一個數(shù)既是3的倍數(shù),又是5的倍數(shù),這個數(shù)是()的倍數(shù).
知識點:奇數(shù)、偶數(shù)、素數(shù)和合數(shù)
練習:1、在27、68、44、72、587、602、431、800中!咎羁铡
奇數(shù)是:,偶數(shù)是:。
2、在2、3、45、10、22、17、51、91、93、97中!咎羁铡
質數(shù)是:,合數(shù)是:。
3、在自然數(shù)中,最小的奇數(shù)是(),最小的質數(shù)是(),最小的合數(shù)是()!咎羁铡
4、質數(shù)只有()個因數(shù),它們分別是()和()。一個合數(shù)至少有()個因數(shù),()既不是質數(shù),也不是合數(shù)。自然數(shù)中,既是質數(shù)又是偶數(shù)的是()!咎羁铡
5、在1—20的自然數(shù)中,奇數(shù)有(),偶數(shù)有()素數(shù)有(),合數(shù)有()。既是奇數(shù)又是合數(shù)的數(shù)是(),連續(xù)的兩個合數(shù)是()。【填空】
6、素數(shù)都是奇數(shù),合數(shù)都是偶數(shù)。()【判斷】
7、三個連續(xù)自然數(shù),連續(xù)奇數(shù),連續(xù)偶數(shù)的和都是3的倍數(shù)。()【判斷】
8、下面是銀湖小學四年級各班人數(shù)。()個班可以分成人數(shù)相等的小組,()個班不可以分成人數(shù)相等的小組。
9、按要求寫出兩個連續(xù)的自然數(shù)!咎羁铡
。1)兩個數(shù)都是素數(shù):()和()。
(2)兩個數(shù)都是合數(shù):()和()。
。3)一個數(shù)是素數(shù)、一個數(shù)是合數(shù):()和()。
《因數(shù)與倍數(shù)》小學教案 篇9
學習內容:
人教版小學數(shù)學五年級下冊第17、18頁。
學習目標:
1.我能掌握2、5的倍數(shù)的特征,并利用特征判斷一個數(shù)是不是2、5的倍數(shù)。
2.我知道什么是奇數(shù)和偶數(shù)。
學習重點:
了解2、5的.倍數(shù)的特征及奇數(shù)和偶數(shù)的含義。
學習難點:
能正確地求出符合要求的數(shù)。
學前準備:
收集電影票。
教學過程:
一、導入新課
二、檢查獨學
1.互動,檢查獨學部分第1、2題完成情況。
2.質疑探討。
三、合作探究
。ㄒ唬2、5的倍數(shù)的特征
1.小組合作。
仔細回顧獨學題2,再與同伴分享自己的收獲。
2.小組代表展示匯報。
3.小組合作交流,驗證規(guī)律。
討論:是不是所有2的倍數(shù)個位上都是0、2、4、6、8?所有5的倍數(shù)個位上都是5或0呢?
我們的想法:
小組代表匯報、總結。
4.試試身手。
(1)獨立完成第18頁“做一做”。
(2)集體交流。我又發(fā)現(xiàn)了 :
。ǘ┢鏀(shù)和偶數(shù)
1.自主閱讀教材。根據(jù)自學內容,我知道:
根據(jù)是否是2的倍數(shù),可把自然數(shù)分為 和 兩類。是2的倍數(shù)的數(shù)叫做 ,不是2的倍數(shù)的數(shù)叫做 。
2.組內交流,并討論:0是不是2的倍數(shù)?為什么?
3.匯報總結。
4.我能說出身邊的奇數(shù)和偶數(shù)。
5.做一做(第17頁)。
《因數(shù)與倍數(shù)》小學教案 篇10
教學內容
教材第17頁、18頁內容。
教學目標
知識目標
1.使學生初步掌握2、5的倍數(shù)的特征。
2.使學生知道奇數(shù)、偶數(shù)的概念。
能力目標
1.會判斷一個數(shù)是否能被2、5整除。
2.會判斷奇數(shù)、偶數(shù)。
3.培養(yǎng)類推能力及主動獲取知識的能力。
情感目標
激發(fā)學生的學習興趣。
教學重點
掌握2、5的倍數(shù)的特征及奇數(shù)、偶數(shù)的概念。
教學難點
靈活運用2、5的倍數(shù)的特征及奇數(shù)、偶數(shù)的概念進行綜合判斷。
教學過程
一、激趣引入 走進課堂
1.前面我們學習了自然數(shù)、整數(shù)、因數(shù),后來又學習了倍數(shù),我們都說自己學的很棒,今天我就考考大家
出示:1~100的自然數(shù)。
2.導入:
這是1~100的自然數(shù)。
你能很快找出2的所有倍數(shù)嗎,并用藍筆圈出來。試一試!
3.同桌結組,比試結果。
二、探究新知
1.2的倍數(shù)的特征。
你們圈出的這些數(shù)和2有什么聯(lián)系
為什么它們都是2的倍數(shù)
這些數(shù)是分別用2X1 2X2 2X3 2X4 2X5 ……得來的
請大家觀察這些數(shù),你發(fā)現(xiàn)這些數(shù)有什么特征?
這些數(shù)個位上是0、2、4、6、8中的.一個。
這個規(guī)律正確嗎?請同學們任寫一些大一點的數(shù)驗證一下。(學生寫數(shù)驗證,小組內討論)
學生匯報,師生共同總結:看來判斷一個數(shù)是不是2的倍數(shù),只要看這個數(shù)的個數(shù)是不是0、2、4、6、8就可以了。
三、練習 出示課本第20頁第一題
自學 奇數(shù)、偶數(shù)
1、關于一個數(shù)是不是2的倍數(shù),還有很多知識,你想知道嗎?請你打開課本第17頁自學。
你們從書上還知道了些什么?
自然數(shù)中,是2的倍數(shù)的數(shù)叫做偶數(shù),不是2的倍數(shù)的數(shù)叫做奇數(shù)。
0也是偶數(shù)。(因為0也是2的倍數(shù),所以也是偶數(shù))
雙數(shù)指的就是偶數(shù),那么單數(shù)指什么呢?
學生說:奇數(shù)
2、鞏固練習 出示課本第17頁做一做
學生口答
根據(jù)上面的學習,你們還能想到哪些數(shù)學知識呢?
自然數(shù)根據(jù)是不是2的倍數(shù),可分為奇數(shù)和偶數(shù)。
因為0、2、4、6、8都是偶數(shù),所以也可以說“個位上是偶數(shù)的數(shù)都是偶數(shù)”。
3、聯(lián)系生活
在生活中,你在哪兒還見過奇數(shù)和偶數(shù)?
我的身高148厘米,148就是一個偶數(shù)
2008是個偶數(shù)
同學們真有心,在我們的生活中經(jīng)常用奇數(shù)、偶數(shù)對事物進行分類。
看來奇數(shù)、偶數(shù)給我們的學習、生活帶來不少方便呢。
2、5的倍數(shù)的特征。
自主探索5的倍數(shù)的特征。
在課本上有100以內數(shù)的表格,請同學們打開書,找出5的倍數(shù),看看有什么規(guī)律,和你的同桌說一說,并想辦法驗證你所發(fā)現(xiàn)的規(guī)律。
師生共同總結:個位上是0或5的數(shù),是5的倍數(shù)。
3、既是2的倍數(shù),又是5的倍數(shù)的數(shù)的特征
判斷:下面哪些數(shù)是2的倍數(shù)?哪些數(shù)是5的倍數(shù)?哪些數(shù)既是2又是5的倍數(shù)?(60 30)
60、75、106,30,521
、僖龑W生思考:一個數(shù)既是2的倍數(shù)又是5的倍數(shù),這個數(shù)有什么特征?
②匯報結果:說說你是怎樣判斷的?
③引導總結:個位上為0的數(shù)既是2的倍數(shù)又是5的倍數(shù)。
三、鞏固發(fā)展:
。1)套圈游戲:把下面的數(shù)填在圈里。
18 24 25 30 35 36 40 42 45 46 50 65 80 100
、2的倍數(shù):
、5的倍數(shù):
③同時是2和5的倍數(shù):
。2)判斷。
、僖粋自然數(shù)不是奇數(shù)就是偶數(shù)。 ( )
②能被2除盡的數(shù)都是偶數(shù)。 ( )
③同時是2和5倍數(shù)的數(shù),個位上的數(shù)字一定是0。 ( )
四、全課小結:
這節(jié)課你學到了哪些知識?
《因數(shù)與倍數(shù)》小學教案 篇11
學習內容:
人教版小學數(shù)學五年級下冊第21頁第8題、第22頁。
學習目標:
1.通過綜合練習,我能熟練掌握2、5、3的倍數(shù)的特征。
2.我能運用2、5、3的倍數(shù)的特征解決問題。
學習重點:
熟練掌握2、5、3的倍數(shù)的`特征。
學習難點:
運用2、5、3的倍數(shù)的特征解決綜合問題。
教學過程:
一、導入新課
二、檢查獨學
1.互動分享獨學部分的完成情況。
2.質疑探討。
三、合作探究
1.小組合作,完成課本第21頁第8題。
。1)3個3的倍數(shù)的偶數(shù)________________
。2)3個5的倍數(shù)的奇數(shù)________________
討論:你能說出3個既是3的倍數(shù)又是5的倍數(shù)的偶數(shù)或奇數(shù)嗎?
2.自主完成第22頁第10題,然后與同伴交流。
3.小組合作,完成第11題,然后組內代表匯報。
4.小組交流“生活中的數(shù)學”。
《因數(shù)與倍數(shù)》小學教案 篇12
教學內容:
人教版小學數(shù)學五年級下冊,因數(shù)與倍數(shù)的整理復習。
教學目標:
1、知識目標:歸納整理“因數(shù)和倍數(shù)”的有關概念,理解并掌握概念間的內在聯(lián)系,形成認知結構。
2、技能目標:親歷數(shù)學知識的整理過程,培養(yǎng)學生的觀察分析、比較、概括、判斷等邏輯思維能力。
3、情感目標:在整理和復習的過程中,培養(yǎng)學生合作,交流的意識,滲透事物間互相聯(lián)系,互相依存的辯證思想
教學重點:
概念間的聯(lián)系和發(fā)展,運用所學的知識解決實際問題。
教學難點:
歸納和整理知識點,形成知識網(wǎng)絡
課前活動:
1、要求學生對每個知識點的意義理解并熟練掌握。
2、把自己的整理情況寫在作業(yè)本上。
本章知識點:
1、因數(shù)與倍數(shù)的意義
2、求一個數(shù)的因數(shù)和倍數(shù)的方法
3、2的倍數(shù)特征
4、奇數(shù)、偶數(shù)的概念
5、5的倍數(shù)特征
6、3的倍數(shù)特征
7、質數(shù)和合數(shù)的概念、區(qū)別
復習提綱:
教學程序:
第一步:創(chuàng)設情境,激趣導入
師:同學們,我們學習完因數(shù)和倍數(shù)這章知識,老師這有兩個問題想考考你們,看誰的反應快,你們愿不愿意?
師:你能用因數(shù)和倍數(shù)的知識描述一下4這個數(shù)嗎?
。4是自然數(shù),合數(shù)、偶數(shù),是8的因數(shù),4是2的倍數(shù))
師:你又能描述一下5嗎?
(5是奇數(shù),是10的質因數(shù))
小結:同學們很聰明!不過,這些知識并不是孤立存在的,它們之間還有很多聯(lián)系,這節(jié)課,我們就一起進一步整理復習這些內容,理順它們之間的聯(lián)系。
(板書:因數(shù)與倍數(shù)的整理復習)
第二步:發(fā)放復習提綱,布置復習任務
1、發(fā)放提綱
2、作要求
第三步:自主復習,回顧舊知識
先自己想一想,要怎么做這些題,如何回答?怎樣舉例?考慮之后就可以在組內交流。
第四步:合作學習、質疑問難
1、合作交流學習
2、師巡視指導
第五步:展示交流,師適時補充點拔
1、展示匯報
2、師適時點拔,補充(老師也做了相應的整理,我們一起看看板書)
第六步:知識鞏固、拓展訓練
技能訓練題:
1、按要求填數(shù),在1—10的自然數(shù)中,選擇合適的數(shù)填入圈內。
質數(shù) 合數(shù) 偶數(shù) 奇數(shù)
既是質數(shù)又是偶數(shù) 既是合數(shù)又是奇數(shù)
2、判斷
。1)12是倍數(shù),2是因數(shù)。( )
。2)1是奇數(shù)也是質數(shù)。( )
(3)奇數(shù)都是質數(shù),偶數(shù)都是合數(shù)。( )
(4)質數(shù)沒有因數(shù),合數(shù)有無數(shù)個因數(shù)。( )
(5)所有的偶數(shù)都是合數(shù)。( )
3、我的手機號碼是:A B C D E F G H I J K ,注意每個字母代表一個數(shù)字,愿不愿意知道老師的手機號碼:
A——既不是質數(shù)也不是合數(shù)( )
B——最小的奇數(shù)的3倍( )
C——5的最小倍數(shù)( )
D——比最小的質數(shù)大5( )
E——8的最大因數(shù)( )
F——3的最小倍數(shù)( )
G——最小的偶數(shù)( )
H——最小的偶數(shù)( )
I——2和5之間的奇數(shù)( )
J——既是5的倍數(shù)又是5的因數(shù)( )
K——比最小的合數(shù)小1( )
老師的手機號碼是:_________
第七步:小結
今天這節(jié)課我們復習了因數(shù)與倍數(shù);2、5、3的.倍數(shù)特征:質數(shù)和合數(shù)這幾個方面的知識,如果說有哪些地方弄不清楚,那么你們剛才破譯出了老師的手機號碼,下來可以撥打我的號碼,老師隨叫隨到,可以幫助你,謝謝同學們的合作。
板書:
因數(shù)與倍數(shù)
a×b=c(a≠0,b≠0),
數(shù)的意義 a和b就是c的因數(shù),
c就是a和b的倍數(shù)
因數(shù)與倍數(shù)
1、一個數(shù)的因數(shù)的個數(shù)是有限的,求一個數(shù)的因 一個數(shù)的倍數(shù)的個數(shù)是無限的。
數(shù)和倍數(shù)的方法
2、求一個數(shù)的因數(shù),要一對一對地找,看哪兩個自然數(shù)的積等于這個數(shù),那兩個數(shù)就是這個數(shù)的因數(shù)。
1、2的倍數(shù)特征:個位上是0、2、 4、6、8的數(shù)都是2的倍數(shù)。
2的倍數(shù)特征
2、奇、偶數(shù):自然數(shù)中,是2的倍數(shù)的數(shù)叫偶數(shù),不是2的倍數(shù)的數(shù)叫做奇數(shù)。
5的倍數(shù)特征:個位上是0或5的數(shù)都是5的倍數(shù)。
3的倍數(shù)特征:一個數(shù)各個數(shù)位上的數(shù)字的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
2、5、3的倍數(shù)特征:個位上是0,各個數(shù)位上的數(shù) 的和是3倍數(shù),這樣的數(shù)就是2、5、3的倍數(shù)
1、質數(shù):一個數(shù)只有1和它本身的個因數(shù),這個數(shù)叫質數(shù)。
質數(shù)和合數(shù)
2、合數(shù):一個數(shù)除了1和它本身以外,還有別的因數(shù),這個數(shù)叫合數(shù)。
3、1既不是質數(shù),也不是合數(shù)。
【《因數(shù)與倍數(shù)》小學教案】相關文章:
因數(shù)與倍數(shù)教案11-25
因數(shù)和倍數(shù)公開課教案09-16
因數(shù)和倍數(shù)教學反思04-11
倍數(shù)和因數(shù)教學反思04-22
《因數(shù)和倍數(shù)》數(shù)學教案(精選10篇)05-13
五年級因數(shù)與倍數(shù)教案03-20