- 實用的平行四邊形教案 推薦度:
- 實用的平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
關(guān)于平行四邊形教案匯總7篇
作為一名專為他人授業(yè)解惑的人民教師,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么你有了解過教案嗎?下面是小編整理的平行四邊形教案7篇,僅供參考,希望能夠幫助到大家。
平行四邊形教案 篇1
教學(xué)內(nèi)容:
教科書第79~81頁
教學(xué)目標(biāo):
1.使學(xué)生通過探索,理解和掌握平行四邊形的面積計算公式,會計算平行四邊形的面積。
2.通過操作、觀察、比較活動,初步認(rèn)識轉(zhuǎn)化的方法,培養(yǎng)學(xué)生的觀察、分析、概括、推導(dǎo)能力,發(fā)展學(xué)生的空間觀念。
教學(xué)過程:
一、導(dǎo)入
1.觀察主題圖(有條件的地方可做成多媒體課件出示),讓學(xué)生找一找圖中有哪些學(xué)過的圖形。
2.觀察圖中學(xué)校門前的兩個花壇,說一說這兩個花壇都是什么形狀的?怎樣比較兩個花壇的大。磕銜嬎闼鼈兊拿娣e嗎?
3.引入學(xué)習(xí)內(nèi)容:長方形的面積我們已經(jīng)會計算了,今天我們研究平行四邊形面積的計算。
板書課題:平行四邊形的面積
二、平行四邊形面積計算
1.用數(shù)方格的方法計算面積。
(1)用多媒體或幻燈出示教材第80頁方格圖:我們已經(jīng)知道可以用數(shù)方格的方法得到一個圖形的面積,F(xiàn)在請同學(xué)們用這個方法算出這個平行四邊形和這個長方形的`面積。
說明要求:一個方格表示1cm2,不滿一格的都按半格計算。把數(shù)出的數(shù)據(jù)填在表格中(見教材第80頁表格)。
。2)同桌合作完成。
。3)匯報結(jié)果,可用投影展示學(xué)生填好的表格。
(4)觀察表格的數(shù)據(jù),你發(fā)現(xiàn)了什么?
通過學(xué)生討論,可以得到平行四邊形與長方形的底與長、高與寬及面積分別相等;這個平行四邊形面積等于它的底乘高;這個長方形的面積等于它的長乘寬。
2.推導(dǎo)平行四邊形面積計算公式。
。1)引導(dǎo):我們用數(shù)方格的方法得到了一個平行四邊形的面積,但是這個方法比較麻煩,也不是處處適用。我們已經(jīng)知道長方形的面積可以用長乘寬計算,平行四邊形的面積是不是也有其他計算方法呢?
學(xué)生討論,鼓勵學(xué)生大膽發(fā)表意見。
。2)歸納學(xué)生意見,提出:通過數(shù)方格我們已經(jīng)發(fā)現(xiàn)這個平行四邊形的面積等于底乘高,是不是所有的平行四邊形都可以用這個方法計算呢?需要驗證一下。因為我們已經(jīng)會計算長方形的面積,所以我們能不能把一個平行四邊形變成一個長方形計算呢?請同學(xué)們試一試。
學(xué)生用課前準(zhǔn)備的平行四邊形和剪刀進行剪和拼,教師巡視。
請學(xué)生演示剪拼的過程及結(jié)果。
教師用課件或教具演示剪—平移—拼的過程。(如教材第81頁的圖示)
。3)我們已經(jīng)把一個平行四邊形變成了一個長方形,請同學(xué)們觀察拼出的長方形和原來的平行四邊形,你發(fā)現(xiàn)了什么?
小組討論?梢猿鍪居懻擃}:
、倨闯龅拈L方形和原來的平行四邊形比,面積變了沒有?
、谄闯龅拈L方形的長和寬與原來的平行四邊形的底和高有什么關(guān)系?
、勰芨鶕(jù)長方形面積計算公式推導(dǎo)出平行四邊形的面積計算公式嗎?
小組匯報,教師歸納:
我們把一個平行四邊形轉(zhuǎn)化成為一個長方形,它的面積與原來的平行四邊形面積相等。
這個長方形的長與平行四邊形的底相等,
這個長方形的寬與平行四邊形的高相等,
因為 長方形的面積=長×寬,
所以 平行四邊形的面積=底×高。
3.教師指出在數(shù)學(xué)中一般用S表示圖形的面積,a表示圖形的底,h表示圖形的高,請同學(xué)們把平行四邊形的面積計算公式用字母表示出來。
三、鞏固和應(yīng)用
1.出示例1。讀題并理解題意。
學(xué)生試做,交流作法和結(jié)果。
2.討論:下面兩個平行四邊形的面積相等嗎?為什么?
平行四邊形教案 篇2
一、學(xué)習(xí)目標(biāo)
。、經(jīng)歷探索多項式與多項式相乘的運算法則的過程,發(fā)展有條理的思考及語言表達能力。
2、 會進行簡單的多項式與多項式的乘法運算
二、學(xué)習(xí)過程
。ㄒ唬┳詫W(xué)導(dǎo)航
1、創(chuàng)設(shè)情境
某地區(qū)在退耕還林期間,將一塊長m米、寬a米的長方形林區(qū)的長、寬分別增加n米和b米,用兩種方法表示這塊林區(qū)現(xiàn)在的面積。
這塊林區(qū)現(xiàn)在的長為 米,寬為 米。因而面積為________米2。
還可以把這塊林地分為四小塊,它們的面積分別為 米2, 米2,_______米2, 米2。故這塊地的面積為 。
由于這兩個算式表示的都是同一塊地的面積,則有 =
如果把(m+n)看作一個整體,你還能用別的方法得到這個等式嗎?
2、概括:
多項式乘以多項式的法則:
3、計算
。1) (2)
4、練一練
。1)
。ǘ┖献鞴リP(guān)
1、某酒店的廚房進行改造,在廚房的中間設(shè)計一個準(zhǔn)備臺,要求四面的過道寬都為x米,已知廚房的長寬分別為8米和5米,用代數(shù)式表示該廚房過道的總面積。
2、解方程
。ㄈ┻_標(biāo)訓(xùn)練
1、填空題:
。1) = =
。2) = 。
2、計算
(1) (2)
。3) (4)
(四)提升
1、怎樣進行多項式與多項式的乘法運算?
2、若 的乘積中不含 和 項,則a= b=
應(yīng)用題
第三十五講 應(yīng)用題
在本講中將介紹各類應(yīng)用題的解法與技巧.
當(dāng)今數(shù)學(xué)已經(jīng)滲入到整個社會的各個領(lǐng)域,因此,應(yīng)用數(shù)學(xué)去觀察、分析日常生活現(xiàn)象,去解決日常生活問題,成為各類數(shù)學(xué)競賽的一個熱點.
應(yīng)用性問題能引導(dǎo)學(xué)生關(guān)心生活、關(guān)心社會,使學(xué)生充分到數(shù)學(xué)與自然和人類社會的密切聯(lián)系,增強對數(shù)學(xué)的理解和應(yīng)用數(shù)學(xué)的信心.
解答應(yīng)用性問題,關(guān)鍵是要學(xué)會運用數(shù)學(xué)知識去觀察、分析、概括所給的實際問題,揭示其數(shù)學(xué)本質(zhì),將其轉(zhuǎn)化為數(shù)學(xué)模型.其求解程序如下:
在初中范圍內(nèi)常見的數(shù)學(xué)模型有:數(shù)式模型、方程模型、不等式模型、函數(shù)模型、平面幾何模型、圖表模型等.
例題求解
一、用數(shù)式模型解決應(yīng)用題
數(shù)與式是最基本的數(shù)學(xué)語言,由于它能夠有效、簡捷、準(zhǔn)確地揭示數(shù)學(xué)的本質(zhì),富有通用性和啟發(fā)性,因而成為描述和表達數(shù)學(xué)問題的重要方法.
【例1】(20xx年安徽中考題)某風(fēng)景區(qū)對5個旅游景點的門票價格進行了調(diào)整,據(jù)統(tǒng)計,調(diào)價前后各景點的游客人數(shù)基本不變。有關(guān)數(shù)據(jù)如下表所示:
景點ABCDE
原價(元)1010152025
現(xiàn)價(元)55152530
平均日人數(shù)(千人)11232
。1)該風(fēng)景區(qū)稱調(diào)整前后這5個景點門票的平均收費不變,平均日總收入持平。問風(fēng)景區(qū)是怎樣計算的?
。2)另一方面,游客認(rèn)為調(diào)整收費后風(fēng)景區(qū)的平均日總收入相對于調(diào)價前,實際上增加了約9.4%。問游客是 怎樣計算的?
。3)你認(rèn)為風(fēng)景區(qū)和游客哪一個的說法較能反映整體實際?
思路點撥 (1)風(fēng)景區(qū)是這樣計算的:
調(diào)整前的平均價格: ,設(shè)整后的平均價格:
∵調(diào)整前后的平均價格不變,平均日人數(shù)不變.
∴平均日總收入持平.
。 2)游客是這樣計算的:
原平均日總收入:10×1+10×1+15×2+20×3+25×2=160(千元)
現(xiàn)平均日總收入:5×1+5×1+15×2+25×3+30×2=175(千元)
∴平均日總收入增加了
。3)游客的說法較能反映整體實際.
二、用方程模型解應(yīng)用題
研究和解決生產(chǎn)實際和現(xiàn)實生恬中有關(guān)問題常常要用到方程<組)的知識,它可以幫助人們從數(shù)量關(guān)系和相等關(guān)系的角度去認(rèn)識和理解現(xiàn)實世界.
【例2】 (重慶中考題)某中學(xué)新建了一棟4層的教學(xué)大樓,每層樓有8間教室,進出這棟大樓共有4道門,其中兩道正門大小相同,兩道側(cè)門大小也相同.安全檢查中,對4道門進行了測試:當(dāng)同時開啟一道正門和兩道側(cè)門時,2min內(nèi)可以通過560名學(xué)生;當(dāng)同時開啟一道正門和一道側(cè)門時,4mln內(nèi)可以通過800名學(xué)生.
(1)求平均每分鐘一道正門和一道側(cè)門各可以通過多少名學(xué)生?
(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5min內(nèi)通過這4道門安全撤離.假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問:建造的這4道門整否符合安全規(guī)定?請說明理由.
思路點撥 列方程(組)的關(guān)鍵是找到題中等量關(guān)系:兩種測試中通過的學(xué)生數(shù)量.設(shè)未知數(shù)時一般問什么設(shè)什么.“符合安全規(guī)定”之義為最大通過量不小于學(xué)生總數(shù).
(1)設(shè)平均每分鐘一道正門可以通過x名學(xué)生,一道側(cè)門可以通過y名學(xué)生,由題意得:
,解得:
(2)這棟樓最多有學(xué)生4×8×4 5=1440(名).
擁擠時5min4道門能通過.
5×2(120+80)(1-20%)=1600(名),
因1600>1440,故建造的4道門符合安全規(guī)定.
三、用不等式模型解應(yīng)用題
現(xiàn)實世界中的不等關(guān)系是普遍存在的,許多問題有時并不需要研究它們之間的相等關(guān)系,只需要確定某個量的變化范圍,即可對所研究的問題有比較清楚的認(rèn)識.
【例3】 (蘇州中考題)我國東南沿海某地的風(fēng)力資源豐富,一年內(nèi)月平均的風(fēng)速不小于3m/s的時間共約160天,其中日平均風(fēng)速不小于6m/s的時間占60天.為了充分利用“風(fēng)能”這種“綠色資源”,該地擬建一個小型風(fēng)力發(fā)電場,決定選用A、B兩種型號的風(fēng)力發(fā)電機,根據(jù)產(chǎn)品說明,這兩種風(fēng)力發(fā)電機在各種風(fēng)速下的日發(fā)電量(即一天的發(fā)電量)如下表:一天的發(fā)電量)如下表:
日平均風(fēng)速v(米/秒)v<33≤v<6v≥6
日發(fā)電量 (千瓦?時)A型發(fā)電機O≥36≥150
B型發(fā)電機O≥24≥90
根據(jù)上面的數(shù)據(jù)回答:
(1)若這個發(fā)電場購x臺A型風(fēng)力發(fā)電機,則預(yù)計這些A型風(fēng)力發(fā)電機一年的發(fā)電總量至少為 千瓦?時;
(2)已知A型風(fēng)力發(fā)電機每臺O.3萬元,B型風(fēng)力發(fā)電機每臺O.2萬元.該發(fā)電場擬購置風(fēng)力發(fā)電機共10臺,希望購機的費用不超過2.6萬元,而建成的風(fēng)力發(fā)電場每年的發(fā)電總量不少于102000千瓦?時,請你提供符合條件的購機方案.
根據(jù)上面的數(shù)據(jù)回答:
思路點撥 (1) (100×36+60×150)x=12600x;
(2)設(shè)購A型發(fā)電機x臺,則購B型發(fā)電機(10—x)臺,
解法一根據(jù)題意得:
解得5≤x ≤6.
故可購A型發(fā)電機5臺,B型發(fā)電機5臺;或購A型發(fā)電機6臺,B型發(fā)電視4臺.
四、用函數(shù)知識解決的應(yīng)用題
函數(shù)類應(yīng)用問題主要有以下兩種類型:(1)從實際問題出發(fā),引進數(shù)學(xué)符號,建立函數(shù)關(guān)系;(2)由提供的基本模型和初始條件去確定函數(shù)關(guān)系式.
【例4】 (揚州)楊嫂在再就業(yè)中心的扶持下,創(chuàng)辦了“潤楊”報刊零售點.對經(jīng)營的某種晚報,楊嫂提供丁如下信息:
①買進每份0.20元,賣出每份0.30元;
②一個月內(nèi)(以30天計),有20天每天可以賣出200份,其余10天每天只能賣出120份;
、垡粋月內(nèi),每天從報社買進的報紙份數(shù)必須相同.當(dāng)天賣不掉的報紙,以每份0.10元退回給報社;
(1)填表:
一個月內(nèi)每天買進該種晚報的份數(shù)100150
當(dāng)月利潤(單位:元)
(2)設(shè)每天從報社買進該種晚報x份,120≤x≤200時,月利潤為y元,試求出y與x的函數(shù)關(guān)系式,并求月利潤的最大值.
思路點撥(1)填表:
一個月內(nèi)每天買進該種晚報的份數(shù)100150
當(dāng)月利潤(單位:元)300390
(2)由題意可知,一個月內(nèi)的20天可獲利潤:
20×=2x(元);其余10天可獲利潤:
10=240—x(元);
故y=x+240,(120≤x≤200), 當(dāng)x=200時,月利潤y的最大值為440元.
注 根據(jù)題意,正確列出函數(shù)關(guān)系式,是解決問題的關(guān)鍵,這里特別要注意自變量x的取值范圍.
另外,初三還會提及統(tǒng)計型應(yīng)用題,幾何型應(yīng)用題.
【例5】 (桂林市)某公司需在一月(31天)內(nèi)完成新建辦公樓的裝修工程.如果由甲、乙兩個工程隊合做,12天可完成;如果由甲、乙兩隊單獨做,甲隊比乙隊少用10天完成.
。1)求甲、乙兩工程隊單獨完成此項工程所需的天數(shù).
(2)如果請甲工程隊施工,公司每日需付費用200 0元;如果請乙工程隊施工,公司每日需付費用1400元.在規(guī)定時間內(nèi):A.請甲隊單獨完成此項工程;B.請乙隊單獨完成此項工 程; C.請甲、乙兩隊合作完成此項工程.以上方案哪一種花錢最少?
思路點撥 這是一道策略優(yōu)選問題.工程問題中:工作量=工作效率×工時.
(1)設(shè)乙工程隊單獨完成此項工程需x天,根據(jù)題意得:
, x=30合題意,
所以,甲工程隊單獨完成此項工程需用20天,乙隊需30天.
(2)各種方案所需的費用分別為:
A.請甲隊需20xx×20=40000元;
B.請乙隊需1400×30=4200元;
C.請甲、乙兩隊合作需(20xx+1400)×12=40800元.
所隊單獨請甲隊完成此項工程花錢最少.
【例6】 (2全國聯(lián)賽初賽題)一支科學(xué)考察隊前往某條河流的上游去考察一個生態(tài)區(qū),他們以每天17km的速度出發(fā),沿河岸向上游行進若干天后到達目的地,然后在生態(tài)區(qū)考察了若干天,完成任務(wù)后以每天25km的速度返回,在出發(fā)后的第60天,考察隊行進了24km后回到出發(fā)點,試問:科學(xué)考察隊的生態(tài)區(qū)考察了多少天?
思路點撥 挖掘題目中隱藏條件是關(guān)鍵!
設(shè)考察隊到 生態(tài)區(qū)去用了x天,返回用了y天,考察用了z天,則x+y+z=60,
17x-25y=-1,即25y-17x=1. ①
這里x、y是正整數(shù),現(xiàn)設(shè) 法求出①的.一組合題意的解,然后計算出z的值.
為此,先求出①的一組特殊解(x0,y0),(這里x0,y0可以是負(fù)整數(shù)).用輾轉(zhuǎn)相除法.
25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.
與①的左端比較可知,x0 =-3,y0=-2.
下面再求出①的合題意的解.
由不定方程的知識可知,①的一切整數(shù)解可表示為x=-3+25t,y=-2+17t,
∴ x+y=42t-5,t為整數(shù).按題意0 ∴z=60—(x+y)=23. 答:考察隊在生態(tài)區(qū)考察的天數(shù)是23天. 注 本題涉及到的未知量多,最終轉(zhuǎn)化為二元一次不定方程來解,希讀者仔細(xì)咀嚼所用方法. 【例7】 (江蘇省第17屆初中競賽題)華鑫超市對顧客實行優(yōu)惠購物,規(guī)定如下: (1)若一次購物少于200元,則不予優(yōu)惠; (2)若一次購物滿200元,但不超過500元,按標(biāo)價給予九折優(yōu)惠; (3)若一次購物超過500元,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折 優(yōu)惠. 小明兩次去該超市購物,分別付款198元與554元.現(xiàn)在小亮決定一次去購 買小明分兩次購買的同樣多的物品,他需付款多少? 思路點撥 應(yīng)付198元購物款討論: 第一次付款198元,可是所購物品的實價,未 享受優(yōu)惠;也可能是按九折優(yōu)惠后所付的款.故應(yīng)分兩種情況加以討論. 情形1 當(dāng)198元為購物不打折付的錢時,所購物品的原價為198元 . 又554=450+104,其中450元為購物500元打九折付的錢,104元為購物打八折付的錢;104÷0. 8 =130(元). 因此,554元所購物品的原價為130+500=630(元),于是購買小呀花198 +630=828(元)所購的全部物品,小亮一次性購買應(yīng)付500×0.9+(828-500)×0.8=712.4(元). 情形2 當(dāng)198元為購物打九折付的錢時,所購物品的原價為198 ÷0.9=220(元) .仿情形1的討論,,購220+630=850{元}物品一次性付款應(yīng)為500×0.9+(850-500)×0.8=730(元). 綜上所述,小亮一次去超市購買小明已購的同樣多的物品,應(yīng)付款712.40元或730元 【例8】 (20xx年全國數(shù)學(xué)競賽題)某項工程,如果由甲、乙兩隊承包,2 天完成,需180000元;由乙、丙兩隊承包,3 天完成,需付150000元;由甲、丙兩隊承包,2 天完成,需付160000元.現(xiàn)在工程由一個隊單獨承包,在保證一周完成的前提下,哪個隊承包費用最少? 思路點撥 關(guān)鍵問題是甲、乙、丙單獨做各需的天數(shù)及獨做時各方日付工資.分兩個層次考慮: 設(shè)甲、乙、丙單獨承包各需x、y、z天完成. 則 ,解得 再設(shè)甲、乙、丙單獨工作一天,各需付u、v、w元, 則 ,解得 于是,由甲隊單獨承包,費用是45500×4=182000 (元). 由乙隊單獨承包,費用是29500×6= 177000 (元). 而丙隊不能在一周內(nèi)完成.所以由乙隊承包費用最少. 學(xué)歷訓(xùn)練 。ˋ級) 1.(河南)在防治“SARS”的戰(zhàn)役中,為防止疫情擴散,某制藥廠接到了生產(chǎn)240箱過氧乙酸消毒液的任務(wù).在生產(chǎn)了60箱后,需要加快生產(chǎn),每天比原來多生產(chǎn)15箱,結(jié)果6天就完成了任務(wù).求加快速度后每天生產(chǎn)多少箱消毒液? 2.(山東省競賽題)某市為鼓勵節(jié)約用水,對自來水妁收費標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水中不超過10t部分按0.45元/噸收費;超過10t而不超過20t部分按每噸0.8元收費;超過20t部分按每噸1.50元收費,某月甲戶比乙戶多繳水費7.10元,乙戶比丙戶多繳水費3.75元,問甲、乙、丙該月各繳水費多少?(自來水按整噸收費) 3.(江蘇省競賽題)甲、乙、丙三人共解出100道數(shù)學(xué)題,每人都解出了其中的60道題,將其中只有1人解出的題叫做難題,3人都解出的題叫做容易題.試問:難題多還是容易題多?多的比少的多幾道題? 4.某人從A地到B地乘坐出租車有兩種方案,一種出租車收費標(biāo)準(zhǔn)是起步價10元,每千米1.2元;另一種出租車收費標(biāo)準(zhǔn)是起步價8元,每千米1.4元,問選擇哪一種出租車比較合適? (提示:根據(jù)目前出租車管理條例,車型不同,起步價可以不同,但起步價的最大行駛里程是相同的,且此里程內(nèi)只收起步價而不管其行駛里程是多少) (B級) 1.(全國初中數(shù)學(xué)競賽題)江堤邊一洼地發(fā)生了管涌,江水不斷地涌出,假定每分鐘涌出的水量相等,如果用兩臺抽水機抽水,40min可抽完;如果用4臺抽水機抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水機 臺. 2.(希望杯)有一批影碟機(VCD)原售價:800元/臺.甲商場用如下辦法促銷: 購買臺數(shù)1~5臺6~10臺11~15臺16~20臺20臺以上 每臺價格760元720元680元640元600元 乙商場用如下辦法促銷:每次購買1~8臺,每臺打九折;每次購買9~16臺,每臺打八五折; 每次購買17~24臺,每臺打八折;每次購買24臺以上,每臺打七五折. (1)請仿照甲商場的促銷列表,列出到乙商場購買VCD的購買臺數(shù)與每臺價格的對照表; (2)現(xiàn)在有A、B、C三個單位,且單位要買10臺VCD,B單位要買16臺VCD,C單位要買20臺VCD,問他們到哪家商場購買花費較少? 3.(河北創(chuàng)新與知識應(yīng)用競賽題)某錢幣收藏愛好者想把3.50元紙幣兌換成1分、2分、5分的硬幣,他要求硬幣總數(shù)為150枚,且每種硬幣不少于20枚,5分的硬幣要多于2分的硬幣.請你據(jù)此設(shè)計兌換方案. 4.從自動扶梯上走到二樓(扶梯本身也在行駛),如果男孩和女孩都做勻速運動且男孩每分鐘走動的級數(shù)是女孩的兩倍,已知男孩走了27級到達扶梯頂部,而女孩走了18級到達扶梯頂部(設(shè)男孩、女孩每次只踏—級).問: (1)扶梯露在外面的部分有多少級? (2)如果扶梯附近有一從二樓到一樓的樓梯,樓梯的級數(shù)和扶梯的級數(shù)相等,兩孩子各自到扶梯頂部后按原速度再下樓梯,到樓梯底部再乘扶梯(不考慮扶梯與樓梯間距離)則男孩第一次追上女孩時走了多少級臺階? 5.某化肥廠庫存三種不同的混合肥,第一種 含磷60%,鉀40%,第二種含鉀10%,氮90%;第三種含鉀50%,磷20%,氮30%,現(xiàn)將三種肥混合成含氮45%的混合肥100?(每種肥都必須取),試問在這三種不同混合肥的不同取量中,新混合肥含鉀的取值范圍. 6.(黃岡競賽題)有麥田5塊A、B、C、D、E,它們的產(chǎn)量,(單位:噸)、交通狀況和每相鄰兩塊麥田的距離如圖21-2所示,要建一座永久性打麥場,這5塊麥田生產(chǎn)的麥子都在此打場.問建在哪快麥田上(不允許建在除麥田以外的其他地方)才能使總運輸量最小?圖中圓圈內(nèi)的數(shù)字為產(chǎn)量,直線段上的字母a、b、d表示距離,且b < a 多邊形的邊角與對角線 j.Co M 第十四講 多邊形的邊角與對角線 邊、角、對角線是多邊形中最基本的概念,求多邊形的邊數(shù) 、內(nèi)外角度數(shù)、對角線條數(shù)是解與多邊形相關(guān)的基本問題,常用到三角形內(nèi)角和、多邊形內(nèi)、外角和定理、不等式、方程等知識. 多邊形 的內(nèi)角和定理反映出一定的規(guī)律性:(n-2)×180°隨n的變化而變化;而多邊形的外角和定理反映出更本質(zhì)的規(guī)律;360°是一個常數(shù),把內(nèi)角問題轉(zhuǎn)化為外角問題,以靜制動是解多邊形有關(guān)問題的常用技巧. 將多邊形問題轉(zhuǎn)化為三角形問題來處理是解多邊形問題的基本策略,連對角線或向外補形、對內(nèi)分割是轉(zhuǎn)化的常用方法,從凸 邊形的一個頂點引出的對角線把 凸 邊形分成 個多角形,凸n邊形一共可引出 對角線. 例題求解 【例1】在一個多邊形中,除了兩個內(nèi)角外,其余內(nèi)角之和為20xx°,則這個多邊形的邊數(shù)是 . (江蘇省競賽題) 思路點撥 設(shè)除去的角為°,y°,多邊形的邊數(shù) 為 ,可建立關(guān)于x、y的不定方程;又0° 鏈接 世界上的萬事萬物是一個不斷地聚合和分裂的過程,點是幾何學(xué)最原始的概念,點生線、線生面、面生體,幾何元素的聚合不斷產(chǎn)生新的圖形,另一方面,不斷地分割已有的圖形可得到新的幾何圖形,發(fā)現(xiàn)新的幾何性質(zhì),多邊形可分成三角形,三角形可以合成其他 一些幾何圖形. 【例2】 在凸10邊形的所有內(nèi)角中,銳角的個數(shù)最多是( ) A.0 B.1 C.3 D.5 (全國初中數(shù)學(xué)競賽題) 思路點撥 多邊形的內(nèi)角和是隨著多邊形的邊數(shù)變化而變化的,而外角和卻總是不變的,因此,可把內(nèi)角為銳角的個數(shù)討論轉(zhuǎn)化為 外角為鈍角的個數(shù)的探討. 【例3】 如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD剪開成為兩個三角形,在平面上把這兩個三角形拼成一個四邊形,你能拼出所有的不同形狀的四邊形嗎?畫出所拼四邊形的示意圖(標(biāo)出圖中直角),并分別寫出所拼四邊形的對角線的長. (烏魯木齊市中考題) 思路點撥 把動手操作與合情想象相結(jié)合 ,解題的關(guān)鍵是能注意到重合的邊作為四邊形對角線有不同情形. 注 教學(xué)建模是當(dāng)今教學(xué)教育、考試改革最熱門的一個話題,簡單地說,“數(shù)學(xué)建模”就是通過數(shù)學(xué)化(引元、畫圖等)把實際問題特化為一個數(shù)學(xué)問題,再運用相應(yīng)的數(shù)學(xué)知識方法(模型)解決問題. 本例通過設(shè)元,把“沒有重疊、沒有空隙”轉(zhuǎn)譯成等式,通過不定方程求解. 【例4】 在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關(guān),當(dāng)圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形. (1)請根據(jù)下列圖形,填寫表中空格: (2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形? (3)從正三角形、正四邊形,正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面 圖形?說明你的理由. (陜西省中考題) 思路點撥 本例主要研究兩個問題:①如果限用一種正多邊形鑲嵌,可選哪些正多邊形;②選用兩種正多邊形鑲嵌,既具有開放性,又具有探索性.假定正n邊形滿足鋪砌要求,那么在它的頂點接合的地方,n個內(nèi)角的和為360°,這樣,將問題的討論轉(zhuǎn)化為求不定方程的正整數(shù)解. 【例5】 如圖,五邊形ABCDE的每條邊所在直線沿該邊垂直方向向外平移4個單位,得到新的五邊形A'B'C'D'E'. 。1)圖中5塊陰影部分即四邊形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一個五邊形嗎?說明理由. (2)證明五邊形A'B'C'D'E'的周長比五邊形ABCD正的周長至少增加25個單位. (江蘇省競賽題) 思路點撥 (1)5塊陰影部分要能拼成一個五邊形須滿足條件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三點分別共線;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周長等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圓的周長逼近估算. 1.如圖,用硬紙片剪一個長為16cm、寬為12cm的長方形,再沿對角線把它分成兩個三角形,用這兩個三角形可拼出各種三角形和四邊形來,其中周長最大的是 ?,周長最小的是 cm. (選6《莢國中小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)》) 2.如圖,∠1+∠2+∠3+∠4+∠5+∠6= . 3.如圖,ABCD是凸四邊形,AB=2,BC=4,CD=7,則線段AD的取值范圍是 . 4.用黑白兩種顏色的正六邊形地面磚按如下所示的規(guī)律,拼成若干個圖案: (1)第4個圖案中有白色地面磚 塊; (2)第n個圖案中有白色地面磚 塊. (江西省中考題) 5.凸n邊形中有且僅有兩個內(nèi)角為鈍角,則n的最大值是( ) A.4 B.5 C. 6 D.7 ( “希望杯”邀請賽試題) 6.一個凸多邊 形的每一內(nèi)角都等于140°,那么,從這個多邊形的一個頂點出發(fā)的對角線的條數(shù)是( ) A.9條 B.8條 C.7條 D. 6條 7.有一個邊長為4m的正六邊形客廳,用邊長為50cm的正三角形瓷磚鋪滿,則需要這種瓷磚( ) A.216塊 B.288塊 C.384塊 D.512塊 ( “希望杯”邀請賽試題) 8.已知△ABC是邊長為2的等邊三角形,△ACD是一個含有30°角的直角三角形,現(xiàn)將△ABC和△ACD拼成一個凸四邊形ABCD. 。1))畫出四邊形ABCD; (2)求出四邊形ABCD的對角線BD的長. (上海市閔行區(qū)中考題) 9.如圖,四邊形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度數(shù). (北京市競賽題) 10.如圖,在五邊形A1A2A3A4A5中,Bl是A1的對邊A3A4的中點,連結(jié)A1B1,我們稱A1B1是這個五邊形的一條中對線,如果五邊形的每條中對線都將五邊形的面積分成相等的兩部分,求證:五邊形的每條邊都有一條對角線和它平行. (安徽省中考題) 11.如圖,凸四邊形有 個;∠A+∠B+∠C+∠D+∠E+∠F+∠G= . (重慶市競賽題) 12.如圖,延長凸五邊形A1A2A3A4A5的各邊相交得到5個角,∠B1,∠B2,∠B3,∠B4,∠B5,它們的和等于 ;若延長凸n邊形(n≥5)的各邊相交,則得到的n個角的和等于 . ( “希望杯”邀請賽試題) 13.設(shè)有一個邊長為1的正三角形,記作A1(圖a),將每條邊三等分,在中間的線段上向外作正三角形,去掉中間的線段后所得到的圖形記作A 2(圖b),再將每條邊三等分,并重復(fù)上述過程,所得到的圖形記作A3(圖c);再將每條邊三 等分,并重復(fù)上述過程,所得到的圖形記作A4,那么,A4的周長是 ;A4這個多邊形的面積是原三角形面積的 倍. (全國初中數(shù)學(xué)聯(lián)賽題) 14.如圖,六邊形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,F(xiàn)A—CD=3,則BC+DC= . (北京市競賽題) 15.在一個n邊形中,除了一個內(nèi)角外,其余(n一1)個內(nèi)角的和為2750°,則這個內(nèi)角的度數(shù)為( ) A.130° D.140° C .105° D.120° 16.如圖,四邊形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,則CD的長為( ) A.4 B.4 C.3 D. 3 (江蘇省競賽題) 注 按題中的方法'不斷地做下去,就會成為下圖那樣的圖形,它的邊界有一個美麗的名稱——雪花曲線或 科克曲線(瑞典數(shù)學(xué)家),這類圖形稱為“分形”,大量的物理、生物與數(shù)學(xué)現(xiàn)象都導(dǎo)致分形,分形是新興學(xué)科“混沌”的重要分支. 17.如圖,設(shè)∠CGE=α,則∠A+∠B+∠C+∠D+∠C+∠F=( ) A.360°一α B.270°一αC.180°+α D.2α (山東省競賽題) 18.平面上有A、B,C、D四點,其中任何三點都不在一直線上,求證:在△ABC、△ABD、△ACD、△BDC中至少有一個三角形的內(nèi)角不超過45°. 19.一塊地能被n塊相同的正方形地磚所覆蓋,如果用較小的相同正方形地磚,那么需n+76塊這樣的地磚才能覆蓋該塊地,已知n及地磚的邊長都是整數(shù),求n. (上海市競賽題) 20.如圖,凸八邊形ABCDEFGH的8 個內(nèi)角都相等,邊AB、BC、CD、DE、EF、FG的長分別為7,4,2,5,6,2,求該八邊形的周長. 21.如圖l是一張可折疊的鋼絲床的示意圖,這是展開后支撐起來放在地面上的情況,如果折疊起來,床頭部分被折到了床面之下(這里的A、B、C、D各點都是活動的),活動床頭是根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性設(shè)計而成的,其折疊過程可由圖2的變換反映出來. 如果已知四邊形ABCD中,AB=6,CD=15,那么BC、AD取多長時,才能實現(xiàn)上述的折疊變化? (淄博市中考題) 22.一個凸n邊形由若干個邊長為1的正方形或正三角形無重疊、無間隙地拼成,求此凸n邊形各個內(nèi)角的大小,并畫出這樣的 凸n邊形的草圖. 圖形的平移與旋轉(zhuǎn) 前蘇聯(lián)數(shù)學(xué)家亞格龍將幾何學(xué)定義為:幾何學(xué)是研究幾何圖形在運動中不變的那些性質(zhì)的學(xué)科. 幾何變換是指把一個幾何圖形Fl變換成另一個幾何圖形F2的方法,若僅改變圖形的位置,而不改變圖形的形狀和大小,這種變換稱為合同變換,平移、旋轉(zhuǎn)是常見的合同變換. 如圖1,若把平面圖形Fl上的各點按一定方向移動一定距離得到圖形F2后,則由的變換叫平移變換. 平移前后的圖形全等,對應(yīng)線段平行且相等,對應(yīng)角相等. 如圖2,若把平面圖Fl繞一定點旋轉(zhuǎn)一個角度得到圖形F2,則由Fl到F2的變換叫旋轉(zhuǎn)變換,其中定點叫旋轉(zhuǎn)中心,定角叫旋轉(zhuǎn)角. 旋轉(zhuǎn)前后的圖形全等,對應(yīng)線段相等,對應(yīng)角相等,對應(yīng)點到旋轉(zhuǎn)中心的距離相等. 通過平移或旋轉(zhuǎn),把部分圖形搬到新的位置,使問題的條件相對集中,從而使條件與待求結(jié)論之間的關(guān)系明朗化,促使問題的解決. 注 合同變換、等積變換、相似變換是基本的幾何變換.等積變換,只是圖形在保持面積不變情況下的形變'而相似變換,只保留線段間的比例關(guān)系,而線段本身的大小要改變. 例題求解 【例1】如圖,P為正方形ABCD內(nèi)一點,PA:PB:PC=1:2:3,則∠APD= . 思路點撥 通過旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個三角形. 【例2】 如圖,在等腰Rt△ABC的斜邊AB上取兩點M,N,使∠MCN=45°,記AM=m,MN= x,DN=n,則以線 段x、m、n為邊長的三角形的形狀是( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.隨x、m、n的變化而改變 思路點撥 把△ACN繞C點順時針旋轉(zhuǎn)45°,得△CBD,這樣∠ACM+∠BCN=45°就集中成一個與∠MCN相等的角,在一條直線上的m、 x、n 集中為△DNB,只需判定△DNB的形狀即可. 注 下列情形,常實施旋轉(zhuǎn)變換: (1)圖形中出現(xiàn)等邊三角形或正方形,把旋轉(zhuǎn)角分別定為60°、90°; (2)圖形中有線段的中點,將圖形繞中點旋轉(zhuǎn)180°,構(gòu)造中心對稱全等三角形; (3)圖形中出現(xiàn)有公共端點的線段,將含有相等線段的圖形繞公共端點,旋轉(zhuǎn)兩相等線段的夾角后與另一相等線段重合. 【例3】 如圖,六邊形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,對邊之差BC-EF=ED?AB=AF?CD>0,求證:該六邊形的各角相等. (全俄數(shù)學(xué)奧林匹克競賽題) 思路點撥 設(shè)法將復(fù)雜的條件BC?FF=ED?AB=AF?CD>0用一個基本圖形表示,題設(shè)中有平行條件,可考慮實施平移變換. 注 平移變換常與平行線相關(guān),往往要用到平行四邊形的性質(zhì),平移變換可將角,線段移到適當(dāng)?shù)奈恢,使分散的條件相對集中,促使問題的解決. 【例4】 如圖,在等腰△ABC的兩腰AB、AC上分別取點E和F,使AE=CF.已知BC=2,求證:EF≥1. (西安市競賽題) 思路點撥 本例實際上就是證明2EF≥BC,不便直接證明,通過平移把BC與EF集中到同一個三角形中. 注 三角形中的不等關(guān)系,涉及到以下基本知識: (1)兩點間線段最短,垂線段最短; (2)三角形兩邊之和大于第三邊,兩邊之差小于第三邊; (3)同一個三角形中大邊對大角(大角對大邊),三角形的一個外角大于任何一個和它不相鄰的內(nèi)角. 【例5】 如圖,等邊△ABC的邊長為 ,點P是△ABC內(nèi)的一點,且PA2+PB2=PC2,若PC=5,求PA、PB的長. (“希望杯”邀請賽試題) 思路點撥 題設(shè)條件滿足勾股關(guān)系PA2+PB2=PC2的三邊PA、PB、PC不構(gòu)成三角形,不能直接應(yīng)用,通過旋轉(zhuǎn)變換使其集中到一個三角形中,這是解本例的關(guān) 鍵. 學(xué)歷訓(xùn)練 1.如圖,P是正方形ABCD內(nèi)一點,現(xiàn)將△ABP繞點B顧時針方向旋轉(zhuǎn)能與△CBP′重合,若PB=3,則PP′= . 2.如圖,P是等邊△ABC內(nèi)一點,PA=6,PB=8,PC=10,則∠APB . 3.如圖,四邊形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,則CD的長為 . 4.如圖,把△ABC沿AB邊平移到△A'B'C'的位置,它們的重疊部分(即圖中陰影部分)的面積是△ABC的面積的一半,若AB= ,則此三角形移動的距離AA'是( ) A. B. C.l D. (20xx年荊州市中考題) 5.如圖,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點C、F,給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF= S△ABC;④EF=AP. 當(dāng)∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),上述結(jié)論中始終正確的有( ) A.1個 B.2個 C .3個 D.4個 (20xx年江蘇省蘇州市中考題) 6.如圖,在四邊形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四邊形ABCD d=8,則BE的長為( ) A.2 B.3 C . D. (20xx年武漢市選拔賽試題) 7.如圖,正方形ABCD和正方形EFGH的邊長分別為 和 ,對角線BD、FH都在直線 上,O1、O2分別為正方形的中心,線段O1O2的長叫做兩個正方形的中心距,當(dāng)中心O2在直線 上平移時,正方形EFGH也隨之平移,在平移時正方形EFGH的形狀、大小沒有變化. (1)計算:O1D= ,O2F= ; (2)當(dāng)中心O2在直線 上平移到兩個正方形只有一個公共點時,中心距O1O2= ; (3)隨著中心O2在直線 上平移,兩個正方形的公共點的個數(shù)還有哪些變化?并求出相對應(yīng)的中心距的值或取值范圍(不必寫出計算過程). (徐州市中考題) 8.圖形的操做過程(本題中四個矩形的水平方向的邊長均為a,豎直 方向的邊長均為b): 在圖a中,將線段A1A2向右平移1個單位到B1B2,得到封閉圖形A1A2B1B2(即陰影部分); 在圖b中, 將折線A1A2A3向右平移1個單位到B1B2B3,得到封閉圖形A1A2A3B1B2B3(即陰影部分); (1)在圖c中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位,從而得到一個封閉圖形,并用斜線畫出陰影; (2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積:S1= ,,S2= ,S3= ; (3)聯(lián)想與探索: 如圖d,在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位),請你猜想空白部分表示的草地面積是多少?并說明你的猜想是正確的. (20xx年河北省中考題) 9.如圖,已知點C為線段AB上一點,△ACM、△CBN是等邊三角形,求證:AN=BM. 說明及要求:本題是《幾何》第二冊幾15中第13題,現(xiàn)要求: (1)將△ACM繞C點按逆時針方向旋轉(zhuǎn)180°,使A點落在CB上,請對照原題圖在圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡). (2)在①所得的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請證明;若不成立,請說明理由. (3)在①得到的圖形中,設(shè)MA的延長線與BN相交于D點,請你判斷△ABD與四邊形MDNC的形狀,并證明你的結(jié)論. 10.如圖,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜邊BC上距離B點3cm的點P為中心,把這個三角形按逆時針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積是 cm2. 11.如圖,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點E在DC上,AE、BC的延長線交于點F,若AE=10,則S△ADE+S△CEF的值是 . (紹興市中考題) 12.如圖,在△ABC中,∠BAC=120°,P是△ABC內(nèi)一點,則PA+PB+PC與AB+AC的大小關(guān)系是( ) A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.無法確定 13.如圖,設(shè)P到等邊三角形ABC兩頂點A、B的距離分別為2、3,則PC所能達到的最大值為( ) A. B. C .5 D.6 (20xx年武漢市選拔賽試題) 14.如圖,已知△ABC中,AB=AC,D為AB上一點,E為AC 延長線上一點,BD=CE,連DE,求證:DE>DC. 15.如圖,P為等邊△ABC內(nèi)一點,PA、PB、PC的長為正整數(shù),且PA2+PB2=PC2,設(shè)PA=m,n為大于5的實數(shù),滿 ,求△ABC的面積. 16.如圖,五羊大學(xué)建立分校,校本部與分校隔著兩條平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A為校本部大門,B為分校大門,為方便人員來往,要在兩條小河上各建一座橋,橋面垂直于河岸.圖中的尺寸是:甲河寬8米,乙河寬10米,A到甲河垂直距離為40米,B到乙河垂直距離為20米,兩河距離100米,A、B兩點水平距離(與小河平行方向)120米,為使A、B兩點間來往路程最短,兩座橋都按這個目標(biāo)而建,那么,此時A、D兩點間來往的路程是多少米? (“五羊杯”競賽題) 17.如圖,△ABC是等腰直角三角形,∠C=90°,O是△ABC內(nèi)一點,點O到△ABC各邊的距離都等于1,將△ABC繞 點O順時針旋轉(zhuǎn)45°,得△A1BlC1 ,兩三角形公共部分為多邊形KLMNPQ. (1)證明:△AKL、△BMN、△CPQ都是等腰直角三角形; (2)求△ABC與△A1BlC1公共部分的面積. (山東省競賽題) 18.(1)操作與證明:如圖1,O是邊長為a的正方形ACBD的中心,將一塊半徑足夠長,圓心角為直角的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉(zhuǎn),求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值. (2)嘗試與思考:如圖2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或正五邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn), 當(dāng)扇形紙板的圓心角為 時,正三角形的邊被紙板覆蓋部分的總長度為定值a;當(dāng)扇形紙板的圓心角為 時,正五邊形的邊被紙板覆蓋部分的總長度也為定值a. (3)探究與引申:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為 時,正n邊形的邊被紙板覆蓋部分 的總長度為定值a;這時正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系;若不是定值,請說明理由. 教學(xué)內(nèi)容:教科書第12—13頁的例1、例2、例3,“試一試”和“練一練”,第14頁的練習(xí)二。 教學(xué)目標(biāo): 1.知識目標(biāo):使學(xué)生通過實際操作和討論思考,探索并掌握平行四邊形的面積公式,并能應(yīng) 用公式正確計算平行四邊形的面積。 2.能力目標(biāo):使學(xué)生經(jīng)歷觀察、操作、測量、填表、討論、分析、歸納等數(shù)學(xué)活動過程,進一步體會“等積變形”的思想方法。 3.情感目標(biāo):培養(yǎng)空間觀念,發(fā)展初步的推理能力。 教學(xué)過程: 一、復(fù)習(xí)導(dǎo)入。 1.說出下面每個圖形的名稱。(電腦出示) 2.在這幾個圖形中,你會求哪些圖形的面積呢? 3.大家想不想知道平行四邊形的面積怎么求?今天我們一起來研究“平行四邊形面積的計算”。(揭示課題) 二、探究新知。 1.教學(xué)例1。 (1)出示例l中的第一組圖形。 提出要求:這兒有兩個圖形,這兩個圖形的面積相等嗎?在小組里說一說你準(zhǔn)備怎樣比較這兩個圖形的面積。學(xué)生分組活動后組織交流。 對學(xué)生的交流作適當(dāng)點評,使學(xué)生明白兩種不同的比較方法都是可以的:即數(shù)方格比較大小或把左邊的圖形轉(zhuǎn)化后與右邊的圖形進行比較。 (2)出示例l中的第二組圖形。 提出要求:你能用剛才的方法比較這兩個圖形的大小嗎? 學(xué)生分組活動后組織交流,在學(xué)生的交流中,教師適當(dāng)強調(diào)“轉(zhuǎn)化”的方法。 (3)小結(jié):把不熟悉的圖形轉(zhuǎn)化成學(xué)過的圖形,并用學(xué)過的知識解決問題,這是數(shù)學(xué)上一種很重要的方法——轉(zhuǎn)化。這種方法在數(shù)學(xué)學(xué)習(xí)中經(jīng)常要用到。 2.教學(xué)例2。 (1)出示畫在方格紙上的平行四邊形。提問:你能想辦法把圖中的平行四邊形轉(zhuǎn)化成長方形嗎? (2)學(xué)生操作,教師巡視指導(dǎo)。 (3)學(xué)生交流操作情況。 提出要求:誰愿意把你的轉(zhuǎn)化方法說給大家聽聽?(讓學(xué)生用實物投影演示剪、拼過程) 提問:有沒有不同的剪、拼方法? (繼續(xù)請學(xué)生演示) 教師用課件演示各種轉(zhuǎn)化方法,進行小結(jié)。 (4)討論:剛才大家把平行四邊形轉(zhuǎn)化成長方形時,都是沿著平行四邊形的一條高剪的。大家為什么要沿著高剪開? 啟發(fā)學(xué)生在討論中理解:沿著高剪開,能使拼成的圖形出現(xiàn)直角,從而符合長方形的特征。 (5)小結(jié):沿著平行四邊形的`任意一條高剪開,再通過平移,都可以把平行四邊形轉(zhuǎn)化成一個長方形。 3.教學(xué)例3。 (1)提問:是不是任意一個平行四邊形都能轉(zhuǎn)化成長方形?平行四邊形轉(zhuǎn)化成長方形后,它的面積大小有沒有變?與原來的平行四邊形之間有什么聯(lián)系? (2)操作:請大家從教科書第123頁上選一個平行四邊形剪下來,先把它轉(zhuǎn)化成長方形,并求出面積,再填寫下表: 轉(zhuǎn)化成的長方形 平行四邊形 長(cm) 寬(cm) 面積(c㎡) 底(cm) 高(cm) 面積(c㎡) (3)小組討論: 、俎D(zhuǎn)化成的長方形與平行四邊形面積相等嗎? 、陂L方形的長和寬與平行四邊形的底和高有什么關(guān)系? 、鄹鶕(jù),長方形的面積公式,怎樣求平行四邊形的面積? (4)反饋、交流,抽象出面積公式。 根據(jù)學(xué)生的討論進行如.下的板書: 因為 長方形的面積二長×寬 所以 平行四邊形的面積二底×高 (5)用字母表示公式。 如果用S表示平行四邊形的面積,用a和h分別表示平行四邊形的底和高,那么你能用字母寫出平行四邊形的面積公式嗎? 結(jié)合學(xué)生的回答,板書: S=ah (6)指導(dǎo)完成“試一試”。 先讓學(xué)生根據(jù)題意獨立解答,再通過指名板演和評點,明確應(yīng)用公式求平行四邊形面積一般要有兩個條件,即底和高。 三、鞏固深化。 1.指導(dǎo)完成“練一練”。先讓學(xué)生獨立計算,再讓學(xué)生說說每個平行四邊形的底和高分別是多少,計算時應(yīng)用了什么公式。 2.指導(dǎo)完成練習(xí)二第1題。 (1)明確要求,鼓勵學(xué)生嘗試操作。 (2)討論:長方形的長、寬、面積各是多少?要使畫出的平行四邊形面積與長方形相等,它的底和高可以分別是多少? (3)學(xué)生繼續(xù)操作后展示作品。引導(dǎo)學(xué)生對展示的平行四邊形進行判斷,是否符合題目的要求。 3.指導(dǎo)完成練習(xí)二第2題。 先讓學(xué)生指出每個平行四邊形的底和高,再讓學(xué)生各自測量計算。 提醒學(xué)生:測量的結(jié)果取整厘米數(shù)。 4.指導(dǎo)完成練習(xí)二第3、4兩題。 先讓學(xué)生獨立解答,再通過交流說說自己解決問題的思路。 5.指導(dǎo)完成練習(xí)二第5題。 (1)同桌兩人分別按要求做出長12厘米,寬7厘米的長方形。一個長方形不動,另一個長方形拉成平行四邊形,平放在桌上。 (2)指導(dǎo)觀察、思考。 要求學(xué)生認(rèn)真觀察做成的長方形和用長方形拉成的平行四邊形,想一想,它們的周長相等嗎?為什么?面積呢? (3)指導(dǎo)測量、計算,驗證猜想。 (4)連續(xù)拉動長方形,啟發(fā)思考面積的變化有什么特點。 四、全課小結(jié)。 通過今天的學(xué)習(xí)活動,你學(xué)會了什么?有哪些收獲? 教學(xué)后記 通過平移轉(zhuǎn)化成長方形計算面積, 使學(xué)生了解用數(shù)方格方法計算面積時不滿整格的都按半格計算,同時初步學(xué)會用這方法估計并計算不規(guī)則物體表面的面積。 使學(xué)生體會平移后圖形的面積不變,感受轉(zhuǎn)化的策略。體會平移后圖形的面積不變。 【學(xué)習(xí)目標(biāo)】 1.能運用勾股定理解決生活中與直角三角形有關(guān)的問題; 2.能從實際問題中建立數(shù)學(xué)模型,將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,同時滲透方程、轉(zhuǎn)化等數(shù)學(xué)思想。 3.進一步發(fā)展有條理思考和有條理表達的能力,體會數(shù)學(xué)的應(yīng)用價值 【學(xué)習(xí)重、難點】 重點:勾股定理的應(yīng)用 難點:將實際問題轉(zhuǎn)化為數(shù)學(xué)問題 【新知預(yù)習(xí)】 1.如圖,單杠AC的高度為5m,若鋼索的底端B與單杠底端C的距離為12m,求鋼索AB的長. 【導(dǎo)學(xué)過程】 一、情境創(chuàng)設(shè) 欣賞生活中含有直角三角形的圖片,如果知道斜拉橋上的索塔AB的高,如何計算各條拉索的長? 二、探索活動 活動一 如圖,起重機吊運物體,已知BC=6m,AC=10m,求AB的長. 活動二 在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.請問這個水池的深度和這根蘆葦?shù)拈L度各為多少? 活動三 一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進廠門形狀如圖所示的某工廠,問這輛卡車能否通過該工廠的廠門? 三、例題講解: 1.《中華人民共和國道路交通安全法》規(guī)定:小汽車在城市道路上行駛速度不得超過70km/h,如圖一輛小汽車在一條城市中的直道上行駛,某一時刻剛好行駛到路對面車速檢測儀的正前方30m處,過了2s后,測得小汽車與車速檢測儀間的距離為50m,這輛小汽車超速了嗎? 2.一種盛飲料的圓柱形杯(如圖),測得內(nèi)部地面半徑為2.5cm,高為12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,問吸管需要多長? 【反饋練習(xí)】 1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,則AB=______;若AB=4,BC=2,則AC=_____; (2)一個直角三角形的模具,量得其中兩邊的長分別為5cm,3cm,則第三邊的長是______; (3)甲乙兩人同時從同一地出發(fā),甲往東走4km,乙往南走6km,這時甲乙兩人相距____km. 2.如圖,圓柱高為8cm,地面半徑為2cm ,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程( 取3)是 ( ) A.20cm B.10cm C.14cm D.無法確定 3.如圖,筆直的公路上A、B兩點相距25km,C、D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個土特產(chǎn)品收購站E,使得C、D兩村到收購站E的距離相等,則收購站E應(yīng)建在離A點多遠(yuǎn)處? 【課后作業(yè)】P67 習(xí)題2.7 1、4題 八年級數(shù)學(xué)競賽輔導(dǎo)教案:由中點想到什么 第十八講 由中點想到什么 線段的中點是幾何圖形中一個特殊的點,它關(guān)聯(lián)著三角形中線、直角三角形斜邊中線、中心對稱圖形、三角形中位線、梯形中位線等豐富的知識,恰當(dāng)?shù)乩弥悬c,處理中點是解與中點有關(guān)問題的關(guān)鍵,由中點想到什么?常見的聯(lián)想路徑是: 1.中線倍長; 2.作直角三角形斜邊中線; 3.構(gòu)造中位線; 4.構(gòu)造中心對稱全等三角形等. 熟悉以下基本圖形,基本結(jié)論: 例題求解 【例1】 如圖,在△ABC中,∠B=2∠C,AD⊥BC于D,M為BC的中點, AB=10cm,則MD的長為 . (“希望杯”邀請賽試題) 思路點撥 取AB中點N,為直角三角形斜邊中線定理、三角形中位線定理的運用創(chuàng)造條件. 注 證明線段倍分關(guān)系是幾何問題中一種常見題型,利用中點是一個有效途徑,基本方法有: (1)利用直角三角斜邊中線定理; (2)運用中位線定理; (3)倍長(或折半)法. 【例2】 如圖,在四邊形ABCD中,一組對邊AB=CD,另一組對邊AD≠BC,分別取AD、BC的中點M、N,連結(jié)MN.則AB與MN的關(guān)系是( ) A.AB=MN B.AB>MN C.AB (20xx年河北省初中數(shù)學(xué)創(chuàng)新與知識應(yīng)用競賽試題) 思路點撥 中點M、N不能直接運用,需增設(shè)中點,常見的方法是作對角線的中點. 【例3】如圖,在△ABC中,AB=AC,延長AB到D,使BD=AB,E為AB中點,連結(jié)CE、CD,求證:C D=2EC. (浙江省寧波市中考題) 思路點撥 聯(lián)想到與中位線相關(guān)的豐富知識,將線段倍分關(guān)系的證明轉(zhuǎn)化為線段相等關(guān)系的證明,解題的關(guān)鍵是恰當(dāng)添輔助線. 【例4】 已知:如圖l,BD、CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG ⊥ CE,垂足分別為F、G,連結(jié)FG,延長AF、AG,與直線BC相交,易證FG= (AB+BC+AC). 若(1)BD、CF分別是△ABC的內(nèi)角平分線(如圖2); (2)BD為△ABC的內(nèi)角平分線,CE為△ABC的外角平分線(如圖3),則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并對其中的一種情況給予證明. (20xx年黑龍江省中考題) 思路點撥 圖1中FG與△ABC三邊的數(shù)量關(guān)系的求法(關(guān)鍵是作輔助線),對尋求后兩個圖形中線段FG與△ABC三邊的數(shù)量關(guān)系起著重要作用,而由平分線、垂線發(fā)現(xiàn)中點,這是解題的基礎(chǔ). 注 三角形與梯形的中位線.在位置上涉及到平行,在數(shù)量上是上下底和的一半,它起著傳遞角的位置關(guān)系和線段長度的功能,在證明線段倍分關(guān)系、兩直線位置關(guān)系、線段長度的計算等方面有著廣泛的應(yīng)用. 【例5】 如圖,任意五邊形ABCDE,M、N、P、Q分別為AB、CD、BC、DE的中點,K、L分別為MN、PQ的中點,求證:KL∥AE且KL= AE. (20xx年天津賽區(qū)試題) 思路點撥 通過連線,將多邊形分割成三角形、四邊形,為多個中點的 利用創(chuàng)造條件,這是解本例的突破口. 注 需要什么,構(gòu)造什么,構(gòu)造基本圖形、構(gòu)造線段的和差(倍分)關(guān)系、構(gòu)造角的關(guān)系等,這是作輔助線的有效思考方法之一. 學(xué)歷訓(xùn)練 1.BD、CE是△ABC的中線,G、H分別是BE、CD的中點,BC=8,則GH= . (20xx年廣西中考題) 2.如圖,△ABC中、BC=a,若D1、E1;分別是AB、AC的中點,則 ;若 D2、E2分別是D1B、E1C的中點,則 :若 D3、E3分別是D2B、E2C的中點.則 ……若Dn、En分別是Dn-1B、En-1C的中點,則DnEn= (n≥1且 n為整數(shù)). (200l年山東省濟南市中考題) 3.如圖,△ABC邊長分別為AD=14,BC=l6,AC=26,P為∠A的平分線AD上一點,且BP⊥AD,M為BC的中點,則PM的`值是 . 4.如圖, 梯形ABCD中,AD∥BC,對角線AC⊥BD,AC=5cm,BD=12cm,則該梯形的中位線的長等于 cm. (20xx年天津市中考題) 5.如圖,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,則EF+GH=( ) A.40 B.48 C 50 D.56 6.如圖,在梯形ABCD中,AD∥BC,E、F分別是對角線BD、AC的中點,若AD=6cm,BC=18?,則EF的長為( ) A.8cm D.7cm C. 6cm D.5cm 7.如圖,矩形紙片ABCD沿DF折疊后,點C落在AB上的E點,DE、DF三等分∠ADC,AB的長為6,則梯形ABCD的中位線長為( ) A.不能確定 B.2 C. D. +1 (20xx年浙江省寧波市中考題) 8.已知四邊形ABCD和對角線AC、BD,順次連結(jié)各邊中點得四邊形MNPQ,給出以下6個命題: 、偃羲盟倪呅蜯NPQ為矩形,則原四邊形ABCD為菱形; 、谌羲盟倪呅蜯NPQ為菱形,則原四邊形ABCD為矩形; 、廴羲盟倪呅蜯NPQ為矩形,則AC⊥BD; 、苋羲盟倪呅蜯NPQ為菱形,則AC=BD; 、萑羲盟倪呅蜯NPQ為矩形,則∠BAD=90°; 、奕羲盟倪呅蜯NPQ為菱形,則AB=AD. 以上命題中,正確的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江蘇省蘇州市中考題) 9.如圖,已知△ABC中,AD是 高,CE是中線,DC=BE,DG⊥CE,G為垂足.求證:(1)G 是CE的 中點;(2)∠B=2∠BCE. (20xx年上海市中考題) 10.如圖,已知在正方形ABCD中,E為DC上一點,連結(jié)BE,作CF⊥BE于P,交AD于F點,若恰好使得AP=AB,求證:E是DC的中點. 11.如圖,在梯形ABCD中,AB∥CD,以AC、AD為邊作平行四邊形ACED,DC的延長線交BE于F. (1)求證:EF=FB; (2)S△BCE能否為S梯形ABCD的 ?若不能,說明理由;若能,求出AB與CD的關(guān)系. 12.如圖,已知AG⊥BD,AF⊥CE,BD、CF分別是∠ABC和∠ACB的角平分線,若BF=2,ED=3,GC=4,則△ABC的周長為 . (20xx年四川省競賽題) 13.四邊形ADCD的對角線AC、BD相交于點F,M、N分別為AB、CD中點,MN分別交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,則AC= . (重慶市競賽題) 1 4.四邊形ABCD中,AD>BC,C、F分別是AB、CD的中點,AD、BC的延長線分別與EF的延長線交于H、G,則∠AHE ∠BGE(填“>”或“=”或“<”號) 15.如圖,在△ABC中,DC=4,BC邊上的中線AD=2,AB+AC=3+ ,則S△ABC等于( ) A. B. C. D. 16.如圖,正方形ABCD中,AB=8,Q是CD的中點,設(shè)∠DAQ=α,在CD上取一點P,使∠BAP=2α,則CP的長是( ) A.1 D.2 C.3 D. 17.如圖,已知A為DE的中點,設(shè)△DBC、△ABC、△EBC的面積分別為S1,S2,S3,則S1、S2、S3之間的關(guān)系式是( ) A. B. C. D. 18.如圖,已知在△ABC中,D為AB的中點,分別延長CA、CB到E、F,使DE=DF,過E、F分別作CA、 CB的垂線,相交于點P.求證:∠PAE=∠PBF. (20xx年全國初中數(shù)學(xué)聯(lián)賽試題) 19.如圖,梯形ABCD中,AD∥BC,AC⊥BD于O,試判斷AB+CD與AD+BC的大小,并證明你的結(jié)論. (山東省競賽題) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如圖甲,連結(jié)DE,設(shè)M為D正的中點. (1)求證:MB=MC; (2)設(shè)∠BAD=∠CAE,固定△ABD, 讓Rt△ACE繞頂點A在平面內(nèi)旋轉(zhuǎn)到圖乙的位置,試問:MB;MC是否還能成立?并證明其結(jié)論. (江蘇省競賽題) 21.如圖甲,平行四邊形ABCD外有一條直線MN,過A、B、C、D4個頂點分別作MN的垂線AA1、BB1、CCl、DDl,垂足分別為Al、B1、Cl、D1. (1)求證AA1+ CCl = BB1 +DDl; (2)如圖乙,直線MN向上移動,使點A與點B、C、D位于直線MN兩側(cè),這時過A、B、C、D向直線MN引垂線,垂足分別為Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之間存在什么關(guān)系? 教學(xué)目標(biāo): 1、認(rèn)識平行四邊形和梯形,掌握平行四邊形和梯形的特征; 2、學(xué)會四邊形分類;概括出長方形、正方形是特殊的平行四邊形,正方形是特殊的長方形的關(guān)系; 能力目標(biāo):培養(yǎng)學(xué)生動手操作能力和概括能力,發(fā)展空間思維能力。 情感目標(biāo):在小組合作中,培養(yǎng)學(xué)生團結(jié)合作互助精神,在拼圖的過程中感受圖形的美。教學(xué)重點:掌握平行四邊形和梯形的特征。 教學(xué)難點:理解平行四邊形、長方形、正方形的關(guān)系。教學(xué)準(zhǔn)備: 教具:課件,四邊形關(guān)系圖,長方形、正方形、平行四邊形、梯形模具各一個。 學(xué)具:三角尺,直尺,量角器。教學(xué)過程: 一、創(chuàng)設(shè)情景感知圖形1、出示校園圖(70頁)(課件展示) 師:在我們美麗的校園中,你能找到那些四邊形? 生:黑板的表面、窗戶的表面—長方形,樓梯的欄桿、活動門上面有平行四邊形,梯子的側(cè)面—梯形 2、師:畫出你喜歡的一個四邊形。 (生畫四邊形) 師:說一說什么樣的圖形是四邊形?生:(有四條邊圍成的圖形是四邊形。) 展示學(xué)生畫出的四邊形,請學(xué)生標(biāo)出它們的名稱。 長方形 平行四邊形 梯形 正方形 3、小組交流: 從四邊形的特點來看,四邊形可以分成幾類?學(xué)生討論交流。(生:按邊的特點:對邊平行的;只有一組對邊平行,另一組不平行的;對邊不平行的、、、、、、按角的特點:4個角都是直角的,不是直角的。)師:今天我們一起來研究平行四邊形和梯形。(板書課題:平行四邊形和梯形) [設(shè)計意圖:創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)的興趣,為學(xué)習(xí)新知識作準(zhǔn)備,并且通過分類,使學(xué)生進一步認(rèn)識所學(xué)的四邊形] 二、合作學(xué)習(xí),探究新知 (一)動手操作初步感知平行四邊形和梯形的特點。師:平行四邊形和梯形又有什么特點呢?現(xiàn)在我們用學(xué)具分別量一量它們的邊、角各有什么特點,把你的發(fā)現(xiàn)像這樣寫下來。并相互說說你是怎樣發(fā)現(xiàn)的?四人小組活動開始。生:學(xué)生活動,教師巡視。 [設(shè)計意圖:通過分小組動手操作,初步感知平行四邊形和梯形的特點,同時培養(yǎng)學(xué)生的合作意識和觀察能力、] 。ǘ┙虒W(xué)平行四邊形的特點。 1、匯報發(fā)現(xiàn)。 師:誰來大膽匯報自己的發(fā)現(xiàn)?你是怎樣知道的?(指名說說平行四邊形的特點)師:誰還有其它的發(fā)現(xiàn)嗎? 2、驗證結(jié)論 師:剛才有的同學(xué)找到平行四邊形的兩組對邊是互想平行的,我們一起來驗證吧,請看大屏幕!(大屏幕展示方法:用直尺、三角尺平移驗證) 3、總結(jié)概念。師:(邊操作邊說)這組對邊平行,這組對邊也平行,兩組對邊都平行。 師:你們能用自己的`話說說怎樣的四邊形叫“平行四邊形”嗎?(指名回答)師:請打開課本71頁,找找課本是怎么說的,畫起來齊讀一遍。揭示概念:[課件展示]兩組對邊分別平行的四邊形叫做平行四邊形。(并板書) 4、引導(dǎo)學(xué)生找出關(guān)鍵詞。 師:在這定義中,你認(rèn)為哪些詞語比較重點?生:兩組, 平行, 四邊形。 師:你真會找。我們把重點詞讀重音,齊讀一遍。生:學(xué)生讀。 師:下面我們男女同學(xué)比賽,看誰讀得好。(男女分別讀) 師反問:要想判斷一個圖形是不是平行四邊形,必須符合什么條件? 5、穿插練習(xí)。 請判斷下面圖形是平行四邊形的打“√”,不是打“×”。 [設(shè)計意圖:通過實踐、分析、驗證、總結(jié)、運用,讓學(xué)生對平行四邊形的定義有充分的理解,并且滲透一種學(xué)習(xí)方法,讓學(xué)生逐步的懂得如何去發(fā)現(xiàn),驗證,運用數(shù)學(xué)概念。] 。ㄈ┱J(rèn)識梯形 1、匯報發(fā)現(xiàn)師:(課件展示)觀察圖片,它們像什么圖形?生:梯形 師:梯形的邊又有哪些特點呢?生:只有一組對邊平行。 師:你們都有同樣的發(fā)現(xiàn)嗎?(板書)生:有。 2、?驗證結(jié)論 師:我們一起來驗證一下。師:(邊操作邊說)這組對邊不平行,這組對邊平行,只有一組對邊平行。 3、總結(jié)概念。 師:你們能用自己的話說說怎樣的四邊形叫“梯形”嗎? 師:請打開課本71頁,找找課本是怎么說的,畫起來齊讀一遍。揭示概念:[課件展示]只有一組對邊平行的四邊形叫做梯形。(并板書) 4、引導(dǎo)學(xué)生找出關(guān)鍵詞。 師:在這定義中,你又認(rèn)為哪些詞語比較重點?生:只有一組,平行四邊形。 師:你找得真準(zhǔn)確,我們把重點詞讀重音,再讀一遍。師:下面我們來小組比賽,看哪個小組讀得好。 師反問:要想判斷一個圖形是不是梯形,必須要符合什么條件? 5、穿插練習(xí)。 請判斷下面圖形是梯形的打“√”,不是打“×”。 6、比較平行四邊形與梯形有什么不同。師:(指練習(xí)中的平行四邊形)問:它為什么不是梯形?它其實是個平行四邊形,那平行四邊形與梯形有什么不同? [設(shè)計意圖:通過進一步運用實踐,分析,驗證,總結(jié),使學(xué)生更好地概括出梯形的概念及特點,并對梯形有了更深的理解。] 三、教學(xué)四邊形之間的關(guān)系。 師:我們已經(jīng)認(rèn)識了這么多的圖形了,這些圖形都是四邊形。(課件出示四邊形的集合圖)師:我們先看長方形,正方形和平行四邊形的邊都有什么共同的特點?生:兩組對邊都平行。 師:那長方形,正方形是特殊的平行四邊形嗎?(四人小組討論)師:指名匯報。 師總結(jié):長方形,正方形是特殊的平行四邊形。它們特殊在哪里?生:四個角都是直角。 師:梯形有沒有兩組對邊平行?生:沒有。 師:所以梯形自己為一類。教師總結(jié):所以在四邊形這個大家族中,有平行四邊形、梯形、一般四邊形這幾個家庭組成,在平行四邊形這個家庭中,包含有長方形這個特殊的小家庭,長方形這個小家庭中又包含正方形這個特殊的成員師:現(xiàn)在我們看投影,同桌互相說說這些四邊形之間的關(guān)系。生:學(xué)生活動。 師:誰來說說它們的關(guān)系。(指名說)質(zhì)疑。 師:請打開課本70——71頁,看書有沒有要問老師的呢? [設(shè)計意圖:通過集合圖形的展示與分析,讓學(xué)生對四邊形之間的關(guān)系有了明確地認(rèn)識。] 五、鞏固練習(xí)。 1、在梯形里畫兩條線段,把它分割成三個三角形。你有幾種畫法?學(xué)生展示 2、七巧板拼一拼用兩塊拼一個梯形用三塊拼一個梯形③用一套七巧板拼一個平行四邊形學(xué)生動手拼圖形,集體展示。 3、用兩個完全一樣的梯形,能拼成一個平行四邊形嗎? 把1張?zhí)菪渭埣粢淮,再拼成一個平行四邊形。 拿一張長方行紙,不對折,剪一次,再拼出一個梯形。 學(xué)生動手拼圖形 全班展示交流 4、拼圖游戲。 師:拼圖要求:用學(xué)過的圖形,拼出你們喜歡的圖畫。(1)找圖形 。2)小組拼圖畫。 (3)展示作品。生:學(xué)生動手拼。 師:同學(xué)們真能干,能利用我們學(xué)過的圖形拼出這么漂亮的圖畫,你們的手真巧。在這些美麗的圖畫中,你最喜歡哪一幅?它是由哪些圖形拼成的? [設(shè)計意圖:通過練習(xí),使學(xué)生進一步理解平行四邊形和梯形的特征,培養(yǎng)學(xué)生動手操作和認(rèn)真思考的能力。] 六、總結(jié):談收獲。 師:同學(xué)們,你覺得這節(jié)課里你表現(xiàn)怎樣?你有什么收獲和體會? 教學(xué)內(nèi)容: 義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書蘇教版一年級下冊19~21頁。 教材簡析: 1.緊密聯(lián)系學(xué)生已有經(jīng)驗,通過豐富的學(xué)習(xí)活動,幫助學(xué)生直觀認(rèn)識常見的平面圖形。教材通過折正方形紙,讓學(xué)生直觀認(rèn)識三角形,把兩個完全相同的三角形拼成一個平行四邊形,直觀地認(rèn)識平行四邊形。這樣安排,既符合低年級學(xué)生的認(rèn)知特點,也有利于他們主動地認(rèn)識平面圖形。 2.把圖形的變換,圖形間的聯(lián)系放在重要位置。教材只要求學(xué)生直觀認(rèn)識三角形、平行四邊形,沒有深入研究它們的特征。但是教材安排了許多折、剪、拼的活動,比較多地將一種圖形變換成另一種圖形。這些操作活動,能使學(xué)生感受圖形之間的聯(lián)系,有利于培養(yǎng)學(xué)生空間觀念和解決問題的能力,有利于發(fā)展學(xué)生的數(shù)學(xué)思維。 3.教材設(shè)計了一些開放性問題,如在釘子板上圍三角形、平行四邊形,圍成的這些圖形可以有大有小,有不同的位置,用一個長方形剪成兩個完全一樣的三角形拼一拼,可以拼成多種圖形。這些題能激起學(xué)生獨立探索的精神,相互合作的愿望,有利于改善教學(xué)方式,培養(yǎng)學(xué)生的創(chuàng)新意識。 教學(xué)目標(biāo): 1.通過把長方形成或正方形折、剪、拼等活動,直觀認(rèn)識三角形和平行四邊形,知道三角形和平行四邊形的名稱,并能識別三角形、平行四邊形,初步了解三角形、平行四邊形在日常生活中的應(yīng)用。 2.在折圖形、剪圖形、擺圖形、拼圖形等活動中,使學(xué)生體會圖形的變換,發(fā)展對圖形的空間想像能力。 3.使學(xué)生在學(xué)習(xí)活動中積累對數(shù)學(xué)的興趣,增強與同學(xué)的交往、合作的意識。 教學(xué)重點與難點:從三角形、平行四邊形實物中抽象出平面圖形,并讓學(xué)生正確認(rèn)識它們。 教具準(zhǔn)備:長方形、正方形紙各一張,不同形狀的三角形、平行四邊形若干個,剪刀一把,釘子板和20頁上半頁的圖片。 學(xué)具準(zhǔn)備:長方形紙、正分形紙、直角三角形紙若干張、剪刀、學(xué)具盒。 教學(xué)過程: 一、游戲激趣,創(chuàng)設(shè)情境 小朋友,你們喜歡折紙嗎?你們想折嗎?今天老師就和你們一起玩折紙游戲好嗎? 二、動手操作,探索新知 1.折一折,認(rèn)識三角形 (1)教師手中拿的是什么圖形的紙?(正方形紙)請小朋友們拿出和老師手中一樣的正方形紙,你能把這張正方形的紙對折成完全一樣的兩部分嗎?(教師巡視,如有學(xué)生對對折不理解要及時指導(dǎo)。) (2)展示成果。 哪位小朋友愿意上來說一說你是怎樣折的? ①對折成兩個完全一樣的長方形。(這是我們已經(jīng)認(rèn)識的) 、趯φ蹆蓚完全一樣的三角形。(貼出圖形)問:這是什么圖形?(板書:三角形) 、圩屗行∨笥延谜叫渭堈鄢鰞蓚完全一樣的三角形。用小手摸一摸折出的'三角形的面,再沿著這個三角形的邊畫一畫,然后拿走折紙剩下△,讓學(xué)生閉上眼睛想一想三角形的樣子,并用手書空畫出來。 [評析:讓學(xué)生建立圖形表象是教學(xué)的重點,教者通過折、摸、畫、想、手書空畫等系列活動,使學(xué)生對三角形有了初步的空間表象,可謂水到渠成。] (3)認(rèn)識不同形狀的三角形。 分別出示銳角三角形、直角三角形、鈍角三角形、等腰三角形、等邊三角形,讓學(xué)生認(rèn)一認(rèn),說明這些都叫三角形,讓學(xué)生記住它們的樣子。 (4)認(rèn)識生活中的三角形。 在我們的生活中有哪些物體的面是三角形的? 同桌互相說一說,然后在全班交流。當(dāng)學(xué)生說到紅領(lǐng)巾、三角尺等身邊有的物體時,讓學(xué)生摸著紅領(lǐng)巾、三角尺的面說:紅領(lǐng)巾的面是三角形的,三角尺的面是三角形的。 (5)在釘字板上圍三角形。 你們知道了身邊有許多物體的面是三角形的,你們能在釘字板上圍出一個三角形嗎?各自圍一圍,同桌相互展示(如有困難,相互幫助)。然后在全班展示出不同形狀的三角形。 (6)擺三角形。 你們能用6根同樣長的小棒擺出一個三角形嗎?擺好后小組相互評一評,推選出優(yōu)秀代表展示。 (7)我們能用正方形紙對折成兩個一樣的三角形,一張長方形的紙,你也能折成的兩個完全一樣的三角形嗎?拿出長方形紙折一折,比一比誰最聰明。 [評析:學(xué)生初步認(rèn)識三角形后,讓學(xué)生了解生活中也有三角形的存在,激發(fā)學(xué)生學(xué)習(xí)三角形的興趣,再讓學(xué)生在釘子板上圍三角形、用小棒擺三角形、用長方形紙折三角形,既體現(xiàn)了具體到抽象的認(rèn)知規(guī)律,又能循序漸進、層層深入地讓學(xué)生認(rèn)知三角形,了解三角形。] 2.剪一剪、拼一拼,認(rèn)識平行四邊形 (1)請小朋友們用剪刀把折成兩個完全一樣的三角形剪下來(師生同剪)。 你能用剪下來的兩個完全一樣的三角形拼出不一樣的圖形嗎? 動手拼一拼,把拼成的不同圖形貼在黑板上(可能拼出長方形、三角形、平行四邊形)。 教師指著平行四邊形問:你們認(rèn)識它嗎?它叫什么圖形?讓所有的小朋友都來拼一個平行四邊形。 (2)出示各種平行四邊形,讓學(xué)生認(rèn)一認(rèn),并沿著它們的邊畫在黑板上,讓學(xué)生認(rèn)一認(rèn),記一記它們的樣子。 (3)找平行四邊形。 出示樓梯圖片,讓學(xué)生找一找圖中的平行四邊形,并用小手指一指,再讓全班小朋友打開課本22頁,同桌互相找一找籬笆、扶手圖片中的平行四邊形,比一比看誰找得多。 (4)圍平行四邊形。 在釘子板上你們能圍出平行四邊形嗎?動手圍一圍,同桌相互檢查,相互幫助,再指名上臺來圍給大家看一看。 (5)擺平行四邊形。 小朋友們圍得真好,你們會用6根同樣長的小棒擺出一個平行四邊形嗎?在書上第44頁方格紙上畫一畫,選擇幾幅展示。 [評析:用學(xué)習(xí)三角形的方法學(xué)習(xí)平行四邊形,有利于學(xué)生的知識遷移,起著潛移默化的作用,讓學(xué)生主動探索新知,發(fā)展學(xué)生的思維能力。] 三、游戲鞏固,拓展提高 1.想想做做第4題 用兩個完全一樣的三角形能拼成幾個不同形狀的平行四邊形?動手拼一拼,展示不同形狀的平行四邊形。 2.想想做做第5題 先讓學(xué)生自由拼一拼,也可以小組討論,把不同拼法貼到黑板上,再讓學(xué)生認(rèn)一認(rèn),記一記。 四、全課總結(jié),課外延伸 我們剛才拼出了許多形狀的圖形,下課后拼給同學(xué)看一看,回家后拼給爸爸媽媽看一看,好嗎? [總評:本課始終以操作為主線,面向全體,全員參與,讓學(xué)生通過操作思考,小組討論,主動探索新知識,充分體現(xiàn)了以學(xué)生為本,教師為組織者、引導(dǎo)者和合作者,使學(xué)生在玩中學(xué),學(xué)中玩。既活躍了學(xué)生的思維,又調(diào)動了他們學(xué)習(xí)的積極性和主動性。讓學(xué)生動手、動腦、動口,多種感官參與,教師又以比比誰最聰明看誰找得多等激勵性的語言,調(diào)動學(xué)生學(xué)習(xí)的興趣,使每位學(xué)生在學(xué)習(xí)過程中都有不同程度的發(fā)展。] 教材分析 1、課標(biāo)分析:《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:“要讓學(xué)生在參與特定的數(shù)學(xué)活動,在具體情境中初步認(rèn)識對象的特征,獲得一些體驗!彼^體驗,從教育的角度看,是一種親歷親為的活動,是一種積極參與活動的學(xué)習(xí)方式。本節(jié)課的設(shè)計充分利用學(xué)生已有的生活經(jīng)驗,把這一學(xué)習(xí)內(nèi)容設(shè)計成實踐活動,讓學(xué)生在自主探究合作學(xué)習(xí)中理解平行四邊形面積的計算公式,并了解平行四邊形與其他幾種圖形間的關(guān)系,讓學(xué)生經(jīng)歷學(xué)習(xí)過程,充分體驗數(shù)學(xué)學(xué)習(xí),感受成功的喜悅,增強信心,同時培養(yǎng)學(xué)生思維的靈活性,與他人合作的態(tài)度以及學(xué)習(xí)數(shù)學(xué)的興趣。 2、教材分析: 《平行四邊形的面積》是義務(wù)教育課程標(biāo)準(zhǔn)實驗教材五年級上冊第五單元第一課時的內(nèi)容。該內(nèi)容是在學(xué)生已學(xué)會長方形、正方形的面積計算,已掌握平行四邊形的特征,會畫平行四邊形的底和對應(yīng)的高的基礎(chǔ)上教學(xué)的。通過本節(jié)課的學(xué)習(xí),能為學(xué)生推導(dǎo)三角形、梯形面積的計算公式提供方法遷移,同時也為進一步學(xué)習(xí)立體圖形的表面積做了準(zhǔn)備。 由于學(xué)生已掌握了長方形的面積計算公式,所以當(dāng)學(xué)生掌握了割補法,把平行四邊形轉(zhuǎn)化成長方形之后,平行四邊形面積的計算公式就自然而然的產(chǎn)生了。本節(jié)課的教學(xué)不僅培養(yǎng)了學(xué)生的觀察比較、分析綜合的能力,還培養(yǎng)了學(xué)生動手操作、探索創(chuàng)新的能力,是學(xué)習(xí)多邊形面積計算,掌握轉(zhuǎn)化思想的起始內(nèi)容。 學(xué)情分析 五年級學(xué)生正處在形象思維和邏輯思維過渡時期。他們有了一定空間觀念和邏輯思維能力。但對于理解圖形面積計算的公式推導(dǎo)和描述推導(dǎo)的過程還是有難度的。這就需要教師利用生動形象的教學(xué)媒介讓學(xué)生去參與、去操作、去實踐,才能讓學(xué)生通過體驗,掌握規(guī)律,形成技能。這節(jié)課中生動形象的多媒體有助于學(xué)生將這些抽象的事物轉(zhuǎn)化為易于理解、易于接受的事物,多媒體的使用在教學(xué)中起到了不可替代的作用。 教學(xué)目標(biāo) (1)使學(xué)生通過探索理解和掌握平行四邊形的面積公式,會計算平行四邊形的面積。 (2)通過操作,觀察、比較活動,初步認(rèn)識轉(zhuǎn)化的方法,培養(yǎng)學(xué)生的觀察、分析、概括、推導(dǎo)能力,發(fā)展學(xué)生的'空間觀念。 (3)培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣及積極參與、團結(jié)協(xié)作的精神。 教學(xué)重點和難點 教學(xué)重點:使學(xué)生通過探索、理解和掌握平行四邊形的面積、計算公式、會計算平行四邊形的面積。 教學(xué)難點:通過學(xué)生動手操作,用割補的方法把一個平行四邊形轉(zhuǎn)化為一個長方形,找出兩個圖形間的聯(lián)系,推導(dǎo)出平行四邊形的面積公式。 教學(xué)過程 一、情感交流 二、探究新知 1、舊知鋪墊 。1)、說出平面圖形名稱并對它們進行分類。 。2)、計算正方形、長方形的面積。(強調(diào)長方形面積計算公式) 設(shè)計目的:從學(xué)生熟悉的知識點入手,能夠降低門檻順理成章的引入新知識。 2、 導(dǎo)入新課 3、 探究平行四邊形面積計算方法。 。1)、在方子格中數(shù)出長方形的面積。 。2)、在方子格中數(shù)出平行四邊形的面積(不滿一格的按半格計算)。要求學(xué)生說出平行四邊形對應(yīng)的底和高。 。3)、通過觀察表格,試著猜測平行四邊形的面積計算方法。 。4)、共同探討如何計算平行四邊形的面積。 、俪鍪酒叫兴倪呅,引導(dǎo)學(xué)生明確其底和高。 、趯W(xué)生在學(xué)具上標(biāo)明其底并畫出對應(yīng)的高。 、塾懻摚耗芊癜哑叫兴倪呅无D(zhuǎn)化為已學(xué)過的平面圖形再計算(保證面積不會發(fā)生變化) ④小組交流如何操作的。(割補法) 、輰W(xué)生代表匯報各組的操作方法以及得到的結(jié)論。 、藁脽羝菔靖钛a的過程。 、咭龑(dǎo)學(xué)生歸納平行四邊形面積計算公式。(讓學(xué)生明確算平行四邊形面積的必須條件) 4、 課堂小練筆。 設(shè)計目的:達到讓學(xué)生動手操作,從實踐中掌握知識,并能夠從實踐中總結(jié)知識。讓學(xué)生明白知識來源于生活,又用于生活。 三、課堂練習(xí) 四、小結(jié)本課 五、課堂作業(yè) 板書設(shè)計 平行四邊形 面積 = 底 × 高 長方形 面積 = 長 × 寬 S表示平行四邊形的面積 a表示底 h表示高 S=a×h s=a.h S=ah 【平行四邊形教案】相關(guān)文章: 平行四邊形教案08-27 平行四邊形面積教案02-09 平行四邊形的面積教案01-17 《平行四邊形的面積》教案01-02 《平行四邊形的認(rèn)識》教案03-15 《平行四邊形的面積》教案06-23 《平行四邊形的認(rèn)識》教案07-09 平行四邊形的認(rèn)識教案07-30 精選平行四邊形教案八篇05-22 精選平行四邊形教案20篇10-19平行四邊形教案 篇3
平行四邊形教案 篇4
平行四邊形教案 篇5
平行四邊形教案 篇6
平行四邊形教案 篇7